-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathattention.py
77 lines (61 loc) · 2.54 KB
/
attention.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
import cv2
import numpy as np
import torch
from torch import nn
def get_aggregate_attention_map(image, attentions, power=1):
"""adapted from https://github.com/jeonsworld/ViT-pytorch/blob/main/visualize_attention_map.ipynb"""
att_mat = torch.stack(attentions).squeeze(1)
att_mat = torch.mean(att_mat, dim=1)
# add identity matrix to account for residual connections
residual_att = torch.eye(att_mat.size(1))
aug_att_mat = att_mat + residual_att
aug_att_mat = aug_att_mat / aug_att_mat.sum(dim=-1).unsqueeze(-1)
# Recursively multiply the weight matrices
joint_attentions = torch.zeros(aug_att_mat.size())
joint_attentions[0] = aug_att_mat[0]
for n in range(1, aug_att_mat.size(0)):
joint_attentions[n] = torch.matmul(aug_att_mat[n], joint_attentions[n - 1])
v = joint_attentions[-1]
grid_size = int(np.sqrt(aug_att_mat.size(-1)))
mask1 = v[0, 1:].reshape(grid_size, grid_size).detach().numpy()
mask = cv2.resize(mask1 / mask1.max(), image.size)[..., np.newaxis]
result = (mask**power * np.asarray(image)).astype("uint8")
return result, mask
def get_last_attention_map(attentions):
"""adapted from https://github.com/facebookresearch/dino/blob/main/visualize_attention.py"""
nh = attentions.shape[1] # number of head
# we keep only the output patch attention
attentions = attentions[0, :, 0, 1:].reshape(nh, -1)
# we keep only a certain percentage of the mass
val, idx = torch.sort(attentions)
val /= torch.sum(val, dim=1, keepdim=True)
cumval = torch.cumsum(val, dim=1)
threshold = 0.6
# We visualize masks obtained by thresholding the self-attention maps to keep xx% of the mass.
th_attn = cumval > (1 - threshold)
idx2 = torch.argsort(idx)
for head in range(nh):
th_attn[head] = th_attn[head][idx2[head]]
# hard code values since all models share same patch size
w_featmap = 14 * 2
h_featmap = 14 * 2
patch_size = 16
th_attn = th_attn.reshape(nh, w_featmap // 2, h_featmap // 2).float()
# interpolate
th_attn = (
nn.functional.interpolate(
th_attn.unsqueeze(0), scale_factor=patch_size, mode="nearest"
)[0]
.cpu()
.numpy()
)
attentions = attentions.reshape(nh, w_featmap // 2, h_featmap // 2)
attentions = (
nn.functional.interpolate(
attentions.unsqueeze(0), scale_factor=patch_size, mode="nearest"
)[0]
.cpu()
.numpy()
)
attentions_mean = np.mean(attentions, axis=0)
return attentions, attentions_mean