forked from PaulStoffregen/Audio
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathfilter_ladder.cpp
310 lines (287 loc) · 9.34 KB
/
filter_ladder.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
/* Audio Library for Teensy, Ladder Filter
* Copyright (c) 2021, Richard van Hoesel
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice, development funding notice, and this permission
* notice shall be included in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
//-----------------------------------------------------------
// Huovilainen New Moog (HNM) model as per CMJ jun 2006
// Implemented as Teensy Audio Library compatible object
// Richard van Hoesel, Feb. 9 2021
// v1.5 adds polyphase FIR or Linear interpolation
// v1.4 FC extended to 18.7kHz, max res to 1.8, 4x oversampling,
// and a minor Q-tuning adjustment
// v.1.03 adds oversampling, extended resonance,
// and exposes parameters input_drive and passband_gain
// v.1.02 now includes both cutoff and resonance "CV" modulation inputs
// please retain this header if you use this code.
//-----------------------------------------------------------
// https://forum.pjrc.com/threads/60488?p=271078&viewfull=1#post271078
#include <Arduino.h>
#include "filter_ladder.h"
#include <math.h>
#include "arm_math.h"
#include <stdint.h>
#define MOOG_PI ((float)3.14159265358979323846264338327950288)
#define MAX_RESONANCE ((float)1.8)
#define MAX_FREQUENCY ((float)(AUDIO_SAMPLE_RATE_EXACT * 0.425f))
float AudioFilterLadder::interpolation_coeffs[AudioFilterLadder::interpolation_taps] = {
-14.30851541590154240E-6, 0.001348560352009071, 0.004029285548698377, 0.007644563345368599,
0.010936856250494802, 0.011982063548666887, 0.008882946305001046, 826.6598116471556070E-6,
-0.011008071930708746,-0.023014151355548934,-0.029736402750934567,-0.025405787911977455,
-0.006012006772274640, 0.028729626071574525, 0.074466890595619062, 0.122757573409695370,
0.163145421379242955, 0.186152844567746417, 0.186152844567746417, 0.163145421379242955,
0.122757573409695370, 0.074466890595619062, 0.028729626071574525,-0.006012006772274640,
-0.025405787911977455,-0.029736402750934567,-0.023014151355548934,-0.011008071930708746,
826.6598116471556070E-6, 0.008882946305001046, 0.011982063548666887, 0.010936856250494802,
0.007644563345368599, 0.004029285548698377, 0.001348560352009071,-14.30851541590154240E-6
};
#define I_NUM_SAMPLES AUDIO_BLOCK_SAMPLES * INTERPOLATION
void AudioFilterLadder::initpoly()
{
if (arm_fir_interpolate_init_f32(&interpolation, INTERPOLATION, interpolation_taps,
interpolation_coeffs, interpolation_state, AUDIO_BLOCK_SAMPLES)) {
polyCapable = false;
return;
}
if (arm_fir_decimate_init_f32(&decimation, interpolation_taps, INTERPOLATION,
interpolation_coeffs, decimation_state, I_NUM_SAMPLES)) {
polyCapable = false;
return;
}
// TODO: should we fill interpolation_state & decimation_state with zeros?
polyCapable = true;
polyOn = true;
}
void AudioFilterLadder::interpolationMethod(AudioFilterLadderInterpolation imethod)
{
if (imethod == LADDER_FILTER_INTERPOLATION_FIR_POLY && polyCapable == true) {
// TODO: if polyOn == false, clear interpolation_state & decimation_state ??
polyOn = true;
} else {
polyOn = false;
}
}
float AudioFilterLadder::LPF(float s, int i)
{
float ft = s * (1.0f/1.3f) + (0.3f/1.3f) * z0[i] - z1[i];
ft = ft * alpha + z1[i];
z1[i] = ft;
z0[i] = s;
return ft;
}
void AudioFilterLadder::resonance(float res)
{
// maps resonance = 0->1 to K = 0 -> 4
if (res > MAX_RESONANCE) {
res = MAX_RESONANCE;
} else if (res < 0.0f) {
res = 0.0f;
}
K = 4.0f * res;
}
void AudioFilterLadder::frequency(float c)
{
Fbase = c;
compute_coeffs(c);
}
void AudioFilterLadder::octaveControl(float octaves)
{
if (octaves > 7.0f) {
octaves = 7.0f;
} else if (octaves < 0.0f) {
octaves = 0.0f;
}
octaveScale = octaves / 32768.0f;
}
void AudioFilterLadder:: passbandGain(float passbandgain)
{
pbg = passbandgain;
if (pbg > 0.5f) pbg = 0.5f;
if (pbg < 0.0f) pbg = 0.0f;
inputDrive(host_overdrive);
}
void AudioFilterLadder::inputDrive(float odrv)
{
host_overdrive = odrv;
if (host_overdrive > 1.0f) {
if (host_overdrive > 4.0f) host_overdrive = 4.0f;
// max is 4 when pbg = 0, and 2.5 when pbg is 0.5
overdrive = 1.0f + (host_overdrive - 1.0f) * (1.0f - pbg);
} else {
overdrive = host_overdrive;
if (overdrive < 0.0f) overdrive = 0.0f;
}
}
void AudioFilterLadder::compute_coeffs(float c)
{
if (c > MAX_FREQUENCY) {
c = MAX_FREQUENCY;
} else if (c < 5.0f) {
c = 5.0f;
}
float wc = c * (float)(2.0f * MOOG_PI / ((float)INTERPOLATION * AUDIO_SAMPLE_RATE_EXACT));
float wc2 = wc * wc;
alpha = 0.9892f * wc - 0.4324f * wc2 + 0.1381f * wc * wc2 - 0.0202f * wc2 * wc2;
//Qadjust = 1.0029f + 0.0526f * wc - 0.0926 * wc2 + 0.0218* wc * wc2;
Qadjust = 1.006f + 0.0536f * wc - 0.095f * wc2 - 0.05f * wc2 * wc2;
// revised hfQ (rvh - feb 14 2021)
}
bool AudioFilterLadder::resonating()
{
for (int i=0; i < 4; i++) {
if (fabsf(z0[i]) > 0.0001f) return true;
if (fabsf(z1[i]) > 0.0001f) return true;
}
return false;
}
static inline float fast_exp2f(float x)
{
float i;
float f = modff(x, &i);
f *= 0.693147f / 256.0f;
f += 1.0f;
f *= f;
f *= f;
f *= f;
f *= f;
f *= f;
f *= f;
f *= f;
f *= f;
f = ldexpf(f, i);
return f;
}
static inline float fast_tanh(float x)
{
if (x > 3.0f) return 1.0f;
if (x < -3.0f) return -1.0f;
float x2 = x * x;
return x * (27.0f + x2) / (27.0f + 9.0f * x2);
}
void AudioFilterLadder::update(void)
{
audio_block_t *blocka, *blockb, *blockc;
float Ktot = K;
bool FCmodActive = true;
bool QmodActive = true;
blocka = receiveWritable(0);
blockb = receiveReadOnly(1);
blockc = receiveReadOnly(2);
if (!blocka) {
if (resonating()) {
// When no data arrives but the filter is still
// resonating, we must continue computing the filter
// with zero input to sustain the resonance
blocka = allocate();
}
if (!blocka) {
if (blockb) release(blockb);
if (blockc) release(blockc);
return;
}
for (int i=0; i < AUDIO_BLOCK_SAMPLES; i++) {
blocka->data[i] = 0;
}
}
if (!blockb) {
FCmodActive = false;
}
if (!blockc) {
QmodActive = false;
}
if (polyOn == true) {
/*----------------------- upsample -------------------------*/
float blockOS[I_NUM_SAMPLES], blockIn[AUDIO_BLOCK_SAMPLES];
float blockOutOS[I_NUM_SAMPLES], blockOut[AUDIO_BLOCK_SAMPLES];
for (int i=0; i < AUDIO_BLOCK_SAMPLES; i++) {
blockIn[i] = blocka->data[i] * overdrive * (float)INTERPOLATION / 32768.0f;
}
arm_fir_interpolate_f32(&interpolation, blockIn, blockOS, AUDIO_BLOCK_SAMPLES);
for (int i=0; i < AUDIO_BLOCK_SAMPLES; i++) {
if (FCmodActive) {
float FCmod = blockb->data[i] * octaveScale;
float ftot = Fbase * fast_exp2f(FCmod);
if (ftot > MAX_FREQUENCY) ftot = MAX_FREQUENCY;
compute_coeffs(ftot);
}
if (QmodActive) {
float Qmod = blockc->data[i] * (1.0f/32768.0f);
Ktot = K + 4.0f * Qmod;
}
if (Ktot > MAX_RESONANCE * 4.0f) {
Ktot = MAX_RESONANCE * 4.0f;
} else if (Ktot < 0.0f) {
Ktot = 0.0f;
}
for(int os=0; os < INTERPOLATION; os++) {
float input = blockOS[i*4 + os];
float u = input - (z1[3] - pbg * input) * Ktot * Qadjust;
u = fast_tanh(u);
float stage1 = LPF(u, 0);
float stage2 = LPF(stage1, 1);
float stage3 = LPF(stage2, 2);
float stage4 = LPF(stage3, 3);
blockOutOS[i*4 + os] = stage4;
}
}
arm_fir_decimate_f32(&decimation, blockOutOS, blockOut, I_NUM_SAMPLES);
for (int i=0; i < AUDIO_BLOCK_SAMPLES; i++) {
blocka->data[i] = (float)(blockOut[i]) * 32768.0f;
}
} else {
// linear interpolation
for (int i=0; i < AUDIO_BLOCK_SAMPLES; i++) {
float input = blocka->data[i] * overdrive * (1.0f/32768.0f);
if (FCmodActive) {
float FCmod = blockb->data[i] * octaveScale;
float ftot = Fbase * fast_exp2f(FCmod);
if (ftot > MAX_FREQUENCY) ftot = MAX_FREQUENCY;
compute_coeffs(ftot);
}
if (QmodActive) {
float Qmod = blockc->data[i] * (1.0f/32768.0f);
Ktot = K + 4.0f * Qmod;
}
if (Ktot > MAX_RESONANCE * 4.0f) {
Ktot = MAX_RESONANCE * 4.0f;
} else if (Ktot < 0.0f) {
Ktot = 0.0f;
}
float total = 0.0f;
float interp = 0.0f;
for (int os = 0; os < INTERPOLATION; os++) {
float u = (interp * oldinput + (1.0f - interp) * input)
- (z1[3] - pbg * input) * Ktot * Qadjust;
u = fast_tanh(u);
float stage1 = LPF(u, 0);
float stage2 = LPF(stage1, 1);
float stage3 = LPF(stage2, 2);
float stage4 = LPF(stage3, 3);
total += stage4 * (1.0f / (float)INTERPOLATION);
interp += (1.0f / (float)INTERPOLATION);
}
oldinput = input;
blocka->data[i] = total * 32768.0f;
}
}
transmit(blocka);
release(blocka);
if (blockb) release(blockb);
if (blockc) release(blockc);
}