-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathmain.py
80 lines (59 loc) · 2.1 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
from ProfileHMM.ProfileHMM import *
from multiprocessing import Pool, TimeoutError
from sys import exit
np.set_printoptions(linewidth=14000000, precision=4, threshold=1000000)
def _plot(y):
import matplotlib.pyplot as plt
for data, c, marker in zip(y, 'ACGU', 'xo.v'):
data = data[:100]
plt.plot(np.arange(len(data)), data, label=c, marker=marker, ls='None')
plt.xlabel('Match state number')
plt.ylabel('Propabilities')
plt.legend(loc='upper right')
# plt.yscale('log')
plt.show()
def read(rfile):
MSA = []
with rfile as train_data:
for line in train_data.readlines():
if line.startswith('>'):
continue
MSA.append(np.array(list(line.strip())))
return np.array(MSA)
def testdata_iter(testdata):
for line in testdata.readlines():
if line.startswith('>'):
continue
yield line
testdata.seek(0)
traindata, testdata, out = parseme()
# read drom fasta data and set some basic values
print("[Info] Profile HMM started. Reading train data...")
MSA = read(traindata)
print("[Info] Creating HMM with probabilities based on given MSA...")
HMM_MSA = HMM(MSA)
print("[Info] HMM ready. ")
if not testdata:
print(
"[Info] No testdata provided. Just printing probabilities to:", out.name)
print(HMM_MSA.emissions_from_M, file=out)
print("[Info] We are done. Bye.")
exit()
print("[Info] Start scoring test data...")
index = []
scores = []
seq_start = [line[:30] for line in testdata_iter(testdata)]
num_lines = sum(1 for line in testdata) // 2 - 1
testdata.seek(0)
with Pool() as pool:
for i, score in enumerate(
pool.imap(HMM_MSA.viterbi, testdata_iter(testdata))):
print('[{} of {}] in progress..'.format(i, num_lines), end='\r')
index.append(i)
scores.append(score)
print()
print('[Info] Scoring completed')
positiv = np.array(HMM_MSA.score(scores), dtype=int)
for i, start, score, positiv in zip(index, seq_start, scores, positiv):
print("{}\t{}\t{}\t{}".format(i, start, score, positiv), file=out)
print("[Info] We are done. Bye.")