Skip to content

Movie classification using Convolution Neural Network (CNN) for text

Notifications You must be signed in to change notification settings

jaypatel00174/CNN-for-Text-Classification

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

9 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Movie_CNN

Movie classification using Convolution Neural Network (CNN)

It is slightly simplified implementation of Yoon Kim's Convolutional Neural Networks for Sentence Classification paper in Tensorflow.

Data is avaiable on http://www.cs.cornell.edu/people/pabo/movie-review-data/ or you can find it on Yoon Kim's cod on git hub https://github.com/yoonkim/CNN_sentence Data files are: rt-polarity.neg and rt-polarity.pos

We have implemented it using TenserFlow Requirements and other details are as follow

Requirements

Python 3 Tensorflow > 0.12 Numpy Training

Print parameters:

./train.py --help
optional arguments:
  -h, --help            show this help message and exit
  --embedding_dim EMBEDDING_DIM
                        Dimensionality of character embedding (default: 128)
  --filter_sizes FILTER_SIZES
                        Comma-separated filter sizes (default: '3,4,5')
  --num_filters NUM_FILTERS
                        Number of filters per filter size (default: 128)
  --l2_reg_lambda L2_REG_LAMBDA
                        L2 regularizaion lambda (default: 0.0)
  --dropout_keep_prob DROPOUT_KEEP_PROB
                        Dropout keep probability (default: 0.5)
  --batch_size BATCH_SIZE
                        Batch Size (default: 64)
  --num_epochs NUM_EPOCHS
                        Number of training epochs (default: 100)
  --evaluate_every EVALUATE_EVERY
                        Evaluate model on dev set after this many steps
                        (default: 100)
  --checkpoint_every CHECKPOINT_EVERY
                        Save model after this many steps (default: 100)
  --allow_soft_placement ALLOW_SOFT_PLACEMENT
                        Allow device soft device placement
  --noallow_soft_placement
  --log_device_placement LOG_DEVICE_PLACEMENT
                        Log placement of ops on devices
  --nolog_device_placement

Train:

./train.py

Evaluating

./eval.py --eval_train --checkpoint_dir="./runs/1459637919/checkpoints/"

Replace the checkpoint dir with the output from the training. To use your own data, change the eval.py script to load your data. .

References

Convolutional Neural Networks for Sentence Classification

A Sensitivity Analysis of (and Practitioners' Guide to) Convolutional Neural Networks for Sentence Classification

For understandig refer :http://www.wildml.com/2015/12/implementing-a-cnn-for-text-classification-in-tensorflow/