forked from MousaviSajad/SleepEEGNet
-
Notifications
You must be signed in to change notification settings - Fork 0
/
summary.py
162 lines (132 loc) · 5.09 KB
/
summary.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
'''
https://github.com/akaraspt/deepsleepnet
Copyright 2017 Akara Supratak and Hao Dong. All rights reserved.
'''
#! /usr/bin/python
# -*- coding: utf8 -*-
import argparse
import os
import re
import scipy.io as sio
import numpy as np
from sklearn.metrics import cohen_kappa_score
from sklearn.metrics import confusion_matrix, f1_score
W=0
N1=1
N2=2
N3=3
REM=4
classes= ['W','N1', 'N2','N3','REM']
n_classes = len(classes)
def evaluate_metrics(cm):
print ("Confusion matrix:")
print (cm)
cm = cm.astype(np.float32)
FP = cm.sum(axis=0) - np.diag(cm)
FN = cm.sum(axis=1) - np.diag(cm)
TP = np.diag(cm)
TN = cm.sum() - (FP + FN + TP)
# https://stackoverflow.com/questions/31324218/scikit-learn-how-to-obtain-true-positive-true-negative-false-positive-and-fal
# Sensitivity, hit rate, recall, or true positive rate
TPR = TP / (TP + FN)
# Specificity or true negative rate
TNR = TN / (TN + FP)
# Precision or positive predictive value
PPV = TP / (TP + FP)
# Negative predictive value
NPV = TN / (TN + FN)
# Fall out or false positive rate
FPR = FP / (FP + TN)
# False negative rate
FNR = FN / (TP + FN)
# False discovery rate
FDR = FP / (TP + FP)
# Overall accuracy
ACC = (TP + TN) / (TP + FP + FN + TN)
# ACC_micro = (sum(TP) + sum(TN)) / (sum(TP) + sum(FP) + sum(FN) + sum(TN))
ACC_macro = np.mean(ACC) # to get a sense of effectiveness of our method on the small classes we computed this average (macro-average)
F1 = (2 * PPV * TPR) / (PPV + TPR)
F1_macro = np.mean(F1)
print ("Sample: {}".format(int(np.sum(cm))))
for index_ in range(n_classes):
print ("{}: {}".format(classes[index_], int(TP[index_] + FN[index_])))
return ACC_macro,ACC, F1_macro, F1, TPR, TNR, PPV
def print_performance(cm,y_true=[],y_pred=[]):
tp = np.diagonal(cm).astype(np.float)
tpfp = np.sum(cm, axis=0).astype(np.float) # sum of each col
tpfn = np.sum(cm, axis=1).astype(np.float) # sum of each row
acc = np.sum(tp)/ np.sum(cm)
precision = tp / tpfp
recall = tp / tpfn
f1 = (2 * precision * recall) / (precision + recall)
FP = cm.sum(axis=0).astype(np.float) - np.diag(cm)
FN = cm.sum(axis=1).astype(np.float) - np.diag(cm)
TP = np.diag(cm).astype(np.float)
TN = cm.sum().astype(np.float) - (FP + FN + TP)
specificity = TN / (TN + FP) #TNR
mf1 = np.mean(f1)
print ("Sample: {}".format(np.sum(cm)))
print ("W: {}".format(tpfn[W]))
print ("N1: {}".format(tpfn[N1]))
print ("N2: {}".format(tpfn[N2]))
print ("N3: {}".format(tpfn[N3]))
print ("REM: {}".format(tpfn[REM]))
print ("Confusion matrix:")
print (cm)
print ("Precision(PPV): {}".format(precision))
print ("Recall(Sensitivity): {}".format(recall))
print ("Specificity: {}".format(specificity))
print ("F1: {}".format(f1))
if (len(y_true)>0):
print ("Overall accuracy: {}".format(np.mean(y_true == y_pred)))
print ("Cohen's kappa score: {}".format(cohen_kappa_score(y_true, y_pred)))
else:
print ("Overall accuracy: {}".format(acc))
print ("Macro-F1 accuracy: {}".format(mf1))
def perf_overall(data_dir):
# Remove non-output files, and perform ascending sort
allfiles = os.listdir(data_dir)
outputfiles = []
for idx, f in enumerate(allfiles):
if re.match("^output_.+\d+\.npz", f):
outputfiles.append(os.path.join(data_dir, f))
outputfiles.sort()
y_true = []
y_pred = []
for fpath in outputfiles:
with np.load(fpath) as f:
print(f["y_true"].shape)
if len(f["y_true"].shape) == 1:
if len(f["y_true"]) < 10:
f_y_true = np.hstack(f["y_true"])
f_y_pred = np.hstack(f["y_pred"])
else:
f_y_true = f["y_true"]
f_y_pred = f["y_pred"]
else:
f_y_true = f["y_true"].flatten()
f_y_pred = f["y_pred"].flatten()
y_true.extend(f_y_true)
y_pred.extend(f_y_pred)
print ("File: {}".format(fpath))
cm = confusion_matrix(f_y_true, f_y_pred, labels=[0, 1, 2, 3, 4])
print_performance(cm)
print (" ")
y_true = np.asarray(y_true)
y_pred = np.asarray(y_pred)
sio.savemat('con_matrix_sleep.mat',{'y_true': y_true, 'y_pred': y_pred})
cm = confusion_matrix(y_true, y_pred,labels=range(n_classes))
acc = np.mean(y_true == y_pred)
mf1 = f1_score(y_true, y_pred, average="macro")
total = np.sum(cm, axis=1)
print "Ours:"
print_performance(cm,y_true,y_pred)
def main():
parser = argparse.ArgumentParser()
parser.add_argument("--data_dir", type=str, default="outputs_2013/outputs_eeg_fpz_cz",
help="Directory where to load prediction outputs")
args = parser.parse_args()
if args.data_dir is not None:
perf_overall(data_dir=args.data_dir)
if __name__ == "__main__":
main()