forked from NoisyLeon/NoisePy
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcolormaps.py
117 lines (103 loc) · 3.91 KB
/
colormaps.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
# -*- coding: iso-8859-1 -*-
"""
Module colormap for creating custom color maps. For example...
>>> from pyclaw.plotting import colormaps
>>> mycmap = colormaps.make_colormap({0:'r', 1.:'b'}) # red to blue
>>> colormaps.showcolors(mycmap) # displays resulting colormap
Note that many colormaps are also defined in matplotlib and can be set by
>>> from matplotlib import cm
>>> mycmap = cm.get_cmap('Greens')
for example, to get colors ranging from white to green.
See matplotlib._cm for the data defining various maps.
"""
#-------------------------
def make_colormap(colors):
#-------------------------
"""
Define a new color map based on values specified in the dictionary
colors, where colors[z] is the color that value z should be mapped to,
with linear interpolation between the given values of z.
The z values (dictionary keys) are real numbers and the values
colors[z] can be either an RGB list, e.g. [1,0,0] for red, or an
html hex string, e.g. "#ff0000" for red.
"""
from matplotlib.colors import LinearSegmentedColormap, ColorConverter
from numpy import sort
z = sort(colors.keys())
n = len(z)
z1 = min(z)
zn = max(z)
x0 = (z - z1) / (zn - z1)
CC = ColorConverter()
R = []
G = []
B = []
for i in range(n):
#i'th color at level z[i]:
Ci = colors[z[i]]
if type(Ci) == str:
# a hex string of form '#ff0000' for example (for red)
RGB = CC.to_rgb(Ci)
else:
# assume it's an RGB triple already:
RGB = Ci
R.append(RGB[0])
G.append(RGB[1])
B.append(RGB[2])
cmap_dict = {}
cmap_dict['red'] = [(x0[i],R[i],R[i]) for i in range(len(R))]
cmap_dict['green'] = [(x0[i],G[i],G[i]) for i in range(len(G))]
cmap_dict['blue'] = [(x0[i],B[i],B[i]) for i in range(len(B))]
mymap = LinearSegmentedColormap('mymap',cmap_dict)
return mymap
def showcolors(cmap):
from pylab import colorbar, clf, axes, linspace, pcolor, \
meshgrid, show, axis, title
#from scitools.easyviz.matplotlib_ import colorbar, clf, axes, linspace,\
#pcolor, meshgrid, show, colormap
clf()
x = linspace(0,1,21)
X,Y = meshgrid(x,x)
pcolor(X,Y,0.5*(X+Y), cmap=cmap, edgecolors='k')
axis('equal')
colorbar()
title('Plot of x+y using colormap')
def schlieren_colormap(color=[0,0,0]):
"""
For Schlieren plots:
"""
from numpy import linspace, array
if color=='k':
color = [0,0,0]
if color=='r':
color = [1,0,0]
if color=='b':
color = [0,0,1]
if color=='g':
color = [0,0.5,0]
color = array([1,1,1]) - array(color)
s = linspace(0,1,20)
colors = {}
for key in s:
colors[key] = array([1,1,1]) - key**10 * color
schlieren_colors = make_colormap(colors)
return schlieren_colors
# -----------------------------------------------------------------
# Some useful colormaps follow...
# There are also many colormaps in matplotlib.cm
all_white = make_colormap({0.:'w', 1.:'w'})
all_light_red = make_colormap({0.:'#ffdddd', 1.:'#ffdddd'})
all_light_blue = make_colormap({0.:'#ddddff', 1.:'#ddddff'})
all_light_green = make_colormap({0.:'#ddffdd', 1.:'#ddffdd'})
all_light_yellow= make_colormap({0.:'#ffffdd', 1.:'#ffffdd'})
red_white_blue = make_colormap({0.:'r', 0.5:'w', 1.:'b'})
blue_white_red = make_colormap({0.:'b', 0.5:'w', 1.:'r'})
red_yellow_blue = make_colormap({0.:'r', 0.5:'#ffff00', 1.:'b'})
blue_yellow_red = make_colormap({0.:'b', 0.5:'#ffff00', 1.:'r'})
yellow_red_blue = make_colormap({0.:'#ffff00', 0.5:'r', 1.:'b'})
white_red = make_colormap({0.:'w', 1.:'r'})
white_blue = make_colormap({0.:'w', 1.:'b'})
schlieren_grays = schlieren_colormap('k')
schlieren_reds = schlieren_colormap('r')
schlieren_blues = schlieren_colormap('b')
schlieren_greens= schlieren_colormap('g')