-
Notifications
You must be signed in to change notification settings - Fork 198
/
Copy pathtrain.py
136 lines (113 loc) · 5.74 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
import os
import sys
import json
import time
import logging
import data_helper
import numpy as np
import tensorflow as tf
from text_cnn import TextCNN
from tensorflow.contrib import learn
from sklearn.model_selection import train_test_split
logging.getLogger().setLevel(logging.INFO)
def train_cnn():
"""Step 0: load sentences, labels, and training parameters"""
train_file = sys.argv[1]
x_raw, y_raw, df, labels = data_helper.load_data_and_labels(train_file)
parameter_file = sys.argv[2]
params = json.loads(open(parameter_file).read())
"""Step 1: pad each sentence to the same length and map each word to an id"""
max_document_length = max([len(x.split(' ')) for x in x_raw])
logging.info('The maximum length of all sentences: {}'.format(max_document_length))
vocab_processor = learn.preprocessing.VocabularyProcessor(max_document_length)
x = np.array(list(vocab_processor.fit_transform(x_raw)))
y = np.array(y_raw)
"""Step 2: split the original dataset into train and test sets"""
x_, x_test, y_, y_test = train_test_split(x, y, test_size=0.1, random_state=42)
"""Step 3: shuffle the train set and split the train set into train and dev sets"""
shuffle_indices = np.random.permutation(np.arange(len(y_)))
x_shuffled = x_[shuffle_indices]
y_shuffled = y_[shuffle_indices]
x_train, x_dev, y_train, y_dev = train_test_split(x_shuffled, y_shuffled, test_size=0.1)
"""Step 4: save the labels into labels.json since predict.py needs it"""
with open('./labels.json', 'w') as outfile:
json.dump(labels, outfile, indent=4)
logging.info('x_train: {}, x_dev: {}, x_test: {}'.format(len(x_train), len(x_dev), len(x_test)))
logging.info('y_train: {}, y_dev: {}, y_test: {}'.format(len(y_train), len(y_dev), len(y_test)))
"""Step 5: build a graph and cnn object"""
graph = tf.Graph()
with graph.as_default():
session_conf = tf.ConfigProto(allow_soft_placement=True, log_device_placement=False)
sess = tf.Session(config=session_conf)
with sess.as_default():
cnn = TextCNN(
sequence_length=x_train.shape[1],
num_classes=y_train.shape[1],
vocab_size=len(vocab_processor.vocabulary_),
embedding_size=params['embedding_dim'],
filter_sizes=list(map(int, params['filter_sizes'].split(","))),
num_filters=params['num_filters'],
l2_reg_lambda=params['l2_reg_lambda'])
global_step = tf.Variable(0, name="global_step", trainable=False)
optimizer = tf.train.AdamOptimizer(1e-3)
grads_and_vars = optimizer.compute_gradients(cnn.loss)
train_op = optimizer.apply_gradients(grads_and_vars, global_step=global_step)
timestamp = str(int(time.time()))
out_dir = os.path.abspath(os.path.join(os.path.curdir, "trained_model_" + timestamp))
checkpoint_dir = os.path.abspath(os.path.join(out_dir, "checkpoints"))
checkpoint_prefix = os.path.join(checkpoint_dir, "model")
if not os.path.exists(checkpoint_dir):
os.makedirs(checkpoint_dir)
saver = tf.train.Saver()
# One training step: train the model with one batch
def train_step(x_batch, y_batch):
feed_dict = {
cnn.input_x: x_batch,
cnn.input_y: y_batch,
cnn.dropout_keep_prob: params['dropout_keep_prob']}
_, step, loss, acc = sess.run([train_op, global_step, cnn.loss, cnn.accuracy], feed_dict)
# One evaluation step: evaluate the model with one batch
def dev_step(x_batch, y_batch):
feed_dict = {cnn.input_x: x_batch, cnn.input_y: y_batch, cnn.dropout_keep_prob: 1.0}
step, loss, acc, num_correct = sess.run([global_step, cnn.loss, cnn.accuracy, cnn.num_correct], feed_dict)
return num_correct
# Save the word_to_id map since predict.py needs it
vocab_processor.save(os.path.join(out_dir, "vocab.pickle"))
sess.run(tf.global_variables_initializer())
# Training starts here
train_batches = data_helper.batch_iter(list(zip(x_train, y_train)), params['batch_size'], params['num_epochs'])
best_accuracy, best_at_step = 0, 0
"""Step 6: train the cnn model with x_train and y_train (batch by batch)"""
for train_batch in train_batches:
x_train_batch, y_train_batch = zip(*train_batch)
train_step(x_train_batch, y_train_batch)
current_step = tf.train.global_step(sess, global_step)
"""Step 6.1: evaluate the model with x_dev and y_dev (batch by batch)"""
if current_step % params['evaluate_every'] == 0:
dev_batches = data_helper.batch_iter(list(zip(x_dev, y_dev)), params['batch_size'], 1)
total_dev_correct = 0
for dev_batch in dev_batches:
x_dev_batch, y_dev_batch = zip(*dev_batch)
num_dev_correct = dev_step(x_dev_batch, y_dev_batch)
total_dev_correct += num_dev_correct
dev_accuracy = float(total_dev_correct) / len(y_dev)
logging.critical('Accuracy on dev set: {}'.format(dev_accuracy))
"""Step 6.2: save the model if it is the best based on accuracy on dev set"""
if dev_accuracy >= best_accuracy:
best_accuracy, best_at_step = dev_accuracy, current_step
path = saver.save(sess, checkpoint_prefix, global_step=current_step)
logging.critical('Saved model at {} at step {}'.format(path, best_at_step))
logging.critical('Best accuracy is {} at step {}'.format(best_accuracy, best_at_step))
"""Step 7: predict x_test (batch by batch)"""
test_batches = data_helper.batch_iter(list(zip(x_test, y_test)), params['batch_size'], 1)
total_test_correct = 0
for test_batch in test_batches:
x_test_batch, y_test_batch = zip(*test_batch)
num_test_correct = dev_step(x_test_batch, y_test_batch)
total_test_correct += num_test_correct
test_accuracy = float(total_test_correct) / len(y_test)
logging.critical('Accuracy on test set is {} based on the best model {}'.format(test_accuracy, path))
logging.critical('The training is complete')
if __name__ == '__main__':
# python3 train.py ./data/consumer_complaints.csv.zip ./parameters.json
train_cnn()