-
Notifications
You must be signed in to change notification settings - Fork 35
/
utils.py
58 lines (44 loc) · 1.52 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
from scipy import misc
import os, cv2, torch
import numpy as np
def load_test_data(image_path, size=512):
img = misc.imread(image_path, mode='RGB')
img = misc.imresize(img, [size, size])
img = np.expand_dims(img, axis=0)
img = preprocessing(img)
return img
def preprocessing(x):
x = x/127.5 - 1 # -1 ~ 1
return x
def save_images(images, size, image_path):
return imsave(inverse_transform(images), size, image_path)
def inverse_transform(images):
return (images+1.) / 2
def imsave(images, size, path):
return misc.imsave(path, merge(images, size))
def merge(images, size):
h, w = images.shape[1], images.shape[2]
img = np.zeros((h * size[0], w * size[1], 3))
for idx, image in enumerate(images):
i = idx % size[1]
j = idx // size[1]
img[h*j:h*(j+1), w*i:w*(i+1), :] = image
return img
def check_folder(log_dir):
if not os.path.exists(log_dir):
os.makedirs(log_dir)
return log_dir
def str2bool(x):
return x.lower() in ('true')
def imagenet_norm(x):
mean = [0.485, 0.456, 0.406]
std = [0.299, 0.224, 0.225]
mean = torch.FloatTensor(mean).unsqueeze(0).unsqueeze(2).unsqueeze(3).to(x.device)
std = torch.FloatTensor(std).unsqueeze(0).unsqueeze(2).unsqueeze(3).to(x.device)
return (x - mean) / std
def denorm(x):
return x * 0.5 + 0.5
def tensor2numpy(x):
return x.detach().cpu().numpy().transpose(1,2,0)
def RGB2BGR(x):
return cv2.cvtColor(x, cv2.COLOR_RGB2BGR)