-
Notifications
You must be signed in to change notification settings - Fork 0
/
preprocess.py
388 lines (348 loc) · 10.8 KB
/
preprocess.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
import pandas as pd
from sklearn.utils import shuffle
import sys
import nltk
from nltk.tokenize import TweetTokenizer
from nltk.corpus import stopwords
from nltk import punkt
#stop_words = stopwords.words('english')
import numpy as np
import re, random
from nltk.stem import SnowballStemmer
from nltk.stem.porter import PorterStemmer
from nltk.stem import WordNetLemmatizer
from nltk.chunk import RegexpParser
import nltk, scipy, emoji
from nltk.corpus import wordnet
import csv, sys, random, math, re, itertools
from sklearn.utils import shuffle
#nltk.download('stopwords')
from nltk.tokenize import TweetTokenizer
from nltk import word_tokenize, pos_tag
from nltk.corpus import wordnet as wn
import enchant
d = enchant.Dict("en_US")
snowball_stemmer = SnowballStemmer('english')
porter_stemmer = PorterStemmer()
wordnet_lemmatizer = WordNetLemmatizer()
tknzr = TweetTokenizer()
CONTRACTIONS = {
"aint": " am not",
"ain't": "am not",
"aren't": "are not",
"arent": " are not",
"can't": "cannot",
"cant": " cannot",
"can't've": "cannot have",
"cant've": " cannot have",
"'cause": "because",
"could've": "could have",
"couldn't": "could not",
"couldnt": " could not",
"couldn't've": "could not have",
"didn't": "did not",
"didnt": " did not",
"doesn't": "does not",
"doesnt": " does not",
"don't": "do not",
"dont": " do not",
"hadn't": "had not",
"hadnt": " had not",
"hadn't've": "had not have",
"hasn't": "has not",
"hasnt": "has not",
"haven't": "have not",
"havent": "have not",
"he'd": "he would",
"he'd've": "he would have",
"he'll": "he will",
"he'll've": "he will have",
"he's": "he is",
"how'd": "how did",
"how'd'y": "how do you",
"how'll": "how will",
"howll": "how will",
"how's": "how is",
"hows": "how is",
"I'd": "I would",
"I'd've": "I would have",
"I'll": "I will",
"I'll've": "I will have",
"I'm": "I am",
"Im": "I am",
"I've": "I have",
"Ive": "I have",
"isn't": "is not",
"isnt": "is not",
"it'd": "it would",
"itd": "it would",
"it'd've": "it would have",
"it'll": "it will",
"itll": "it will",
"it'll've": "it will have",
"it's": "it is",
"let's": "let us",
"lets": "let us",
"ma'am": "madam",
"mayn't": "may not",
"might've": "might have",
"mightve": "might have",
"mightn't": "might not",
"mightnt": "might not",
"mightn't've": "might not have",
"must've": "must have",
"mustve": "must have",
"mustn't": "must not",
"mustnt": "must not",
"mustn't've": "must not have",
"needn't": "need not",
"neednt": "need not",
"needn't've": "need not have",
"o'clock": "of the clock",
"oughtn't": "ought not",
"oughtn't've": "ought not have",
"shan't": "shall not",
"sha'n't": "shall not",
"shan't've": "shall not have",
"she'd": "she would",
"she'd've": "she would have",
"she'll": "she will",
"she'll've": "she will have",
"she's": "she is",
"shes": "she is",
"should've": "should have",
"shouldve": "should have",
"shouldn't": "should not",
"shouldnt": "should not",
"shouldn't've": "should not have",
"shouldnt've": "should not have",
"so've": "so have",
"so's": "so is",
"that'd": "that had",
"thatd": "that had",
"that'd've": "that would have",
"that's": "that is",
"thats": "that is",
"there'd": "there would",
"thered": "there would",
"there'd've": "there would have",
"there's": "there is",
"theres": "there is",
"they'd": "they would",
"theyd": "they would",
"they'd've": "they would have",
"they'll": "they will",
"theyll": "they will",
"they'll've": "they will have",
"they're": "they are",
"theyre": "they are",
"they've": "they have",
"theyve": "they have",
"to've": "to have",
"wasn't": "was not",
"wasnt": "was not",
"we'd": "we would",
"we'd've": "we would have",
"we'll": "we will",
"we'll've": "we will have",
"we're": "we are",
"we've": "we have",
"weve": "we have",
"weren't": "were not",
"werent": "were not",
"what'll": "what will",
"whatll": "what will",
"what'll've": "what will have",
"what're": "what are",
"whatre": "what are",
"what's": "what is",
"whats": "what is",
"what've": "what have",
"whatve": "what have",
"when's": "when is",
"whens": "when is",
"when've": "when have",
"where'd": "where did",
"where's": "where is",
"wheres": "where is",
"where've": "where have",
"who'll": "who will",
"who'll've": "who will have",
"who's": "who is",
"who've": "who have",
"why's": "why is",
"why've": "why have",
"will've": "will have",
"won't": "will not",
"wont": "will not",
"won't've": "will not have",
"would've": "would have",
"wouldve": "would have",
"wouldn't": "would not",
"wouldnt": "would not",
"wouldn't've": "would not have",
"y'all": "you all",
"yall": "you all",
"y'all'd": "you all would",
"y'all'd've": "you all would have",
"y'all're": "you all are",
"y'all've": "you all have",
"you'd": "you would",
"youd": "you would",
"you'd've": "you would have",
"you'll": "you will",
"youll": "you will",
"you'll've": " you will have",
"you're": "you are",
"youre": "you are",
"you've": "you have",
"youve": "you have"
}
def remove_adjacent_duplicates(word_list):
curr = None
new_word_list = []
for i in range(len(word_list)):
if curr is None:
curr = word_list[i]
new_word_list.append(curr)
continue
if word_list[i] != curr:
curr = word_list[i]
new_word_list.append(curr)
return new_word_list
def remove_adjacent_duplicates_fromline(line):
#word_list = nltk.word_tokenize(line.split()
tknzr = TweetTokenizer()
word_list = tknzr.tokenize(line)
#new_word_list = [word for word in word_list if len(word) > 2]
return ' '.join(remove_adjacent_duplicates(word_list))
def preprocess_1(sentence):
if type(sentence) != str:
return ""
sentence = (sentence.encode('ascii', 'ignore')).decode("utf-8")
# URLs
sentence = re.sub(r'http\S+', ' <URL> ', sentence)
# emoji
for c in sentence:
if c in emoji.UNICODE_EMOJI:
sentence = re.sub(c, emoji.demojize(c), sentence)
sentence = re.sub("([!]){1,}", " ! ", sentence)
sentence = re.sub("([.]){1,}", " . ", sentence)
sentence = re.sub("([?]){1,}", " ? ", sentence)
sentence = re.sub("([;]){1,}", " ; ", sentence)
sentence = re.sub("([:]){2,}", " : ", sentence)
# numerical values
#sentence = re.sub("[-+]?[.\d]*[\d]+[:,.\d]*", " <NUMBER> ", sentence)
# convert words such as "goood" to "good"
sentence = ''.join(''.join(s)[:2] for _, s in itertools.groupby(sentence))
# convert to lower case
words = tknzr.tokenize(sentence)
# expand contractions
words = [CONTRACTIONS[word.lower().strip()] if word.lower().strip() in CONTRACTIONS else word for word in words]
new_words = []
for word in words:
if d.check(word.lower()):
new_words.append(word)
continue
if len(word) < 2:
new_words.append(word)
else:
if word[0] == 'n': # and word[1].isupper():
new_words.append(word[1:])
elif word[0].islower() and word[1].isupper() and d.check(word[1:]):
new_words.append(word[1:])
else:
new_words.append(word)
words = new_words
f = open('slangs/slangs.txt')
lines = f.readlines()
f.close()
slangs = {}
for line in lines:
slangs[line.split()[0]] = " ".join(line.split()[1:])
f = open('slangs/slangs2.txt')
lines = f.readlines()
f.close()
for line in lines:
slangs[line.split()[0]] = " ".join(line.split()[1:])
words = [slangs[word.lower().strip()] if word.lower().strip() in slangs else word for word in words]
sentence = " ".join(words)
sentence = re.sub('[^ a-zA-Z0-9.!?:;<>_#@&]', ' ', sentence)
sentence = re.sub('\s+', ' ', sentence)
return remove_adjacent_duplicates_fromline(sentence)
def preprocess_2(sentence): # after phrase thing
if type(sentence) != str:
return ""
sentence = (sentence.encode('ascii', 'ignore')).decode("utf-8")
# numerical values
sentence = re.sub("[-+]?[.\d]*[\d]+[:,.\d]*", "<number>", sentence)
# convert to lower case
words = tknzr.tokenize(sentence)
'''
stop = ['i', 'me', 'my', 'myself', 'we', 'our', 'ours', 'ourselves', 'you',
"you're", "you've", "you'll", "you'd", 'your', 'yours', 'yourself',
'yourselves', 'he', 'him', 'his', 'himself', 'she', "she's", 'her',
'hers', 'herself', 'it', "it's", 'its', 'itself', 'they', 'them',
'their', 'theirs', 'themselves', 'what', 'which', 'who', 'whom',
'this', 'that', "that'll", 'these', 'those', 'am', 'is', 'are',
'was', 'were', 'be', 'been', 'being', 'have', 'has', 'had', 'having',
'do', 'does', 'did', 'doing', 'a', 'an', 'the', 'and','s', 't', 'd', 'll',
'm', 'o','re', 've', 'y', 'ma']
'''
#words = [word for word in words if word not in stop]
words = ["<number>" if word.isdigit() else word for word in words]
words = ["<@>" if '@' in word else word for word in words]
special_words = ['.', '!', '?', ':', ';', '_', '-','<','>','#','@', '&', '<number>', '<@>', '<URL>']
#words = [word.strip() for word in words if len(word) > 1 or word in special_words]
f = open('slangs/some_keywords.txt')
lines = f.readlines()
f.close()
some_keywords = set()
for line in lines:
some_keywords.add(line.strip().lower())
eng_words = []
for word in words:
if word.lower() in some_keywords:
eng_words.append(word)
continue
if d.check(word.lower()) or word in special_words or word[0] in special_words:
eng_words.append(word)
elif things2try(word) is not None:
eng_words.append(things2try(word))
elif word[0].isupper():
eng_words.append(word)
elif len(word) > 3:
suggestions = d.suggest(word.lower())
if len(suggestions) < 3 and len(suggestions) > 0:
eng_words.append(suggestions[0])
#else:
#print(word)
#else:
#print(word)#, ' sugg-', d.suggest(word.lower()))
sentence = " ".join(eng_words)
sentence = re.sub('[^ a-zA-Z0-9.!?:;<>_#@&]', ' ', sentence)
sentence = re.sub('&', " and ", sentence)
sentence = re.sub('\s+', ' ', sentence)
sentence = sentence.lower()
return remove_adjacent_duplicates_fromline(sentence)
def things2try(word):
one = ''.join(''.join(s)[:1] for _, s in itertools.groupby(word.lower()))
if d.check(one): # or in slangs etc
#print(word," - ", one)
return one
if word[-1] == 's':
if d.check(word[:-1]):
#print(word," - ", word[:-1])
return word[:-1]
if word[-1] == 'n':
if d.check(word+'g'):
#print(word," - ", word+'g')
return word+'g'
return None
def full_preprocess(sentence):
return preprocess_2(preprocess_1(sentence))
def contains_digits(word):
for ch in word:
if ch.isdigit():
return True
return False