-
Notifications
You must be signed in to change notification settings - Fork 58
/
pandas_techinal_indicators.py
569 lines (477 loc) · 16.1 KB
/
pandas_techinal_indicators.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
"""
Indicators as shown by Peter Bakker at:
https://www.quantopian.com/posts/technical-analysis-indicators-without-talib-code
"""
"""
25-Mar-2018: Fixed syntax to support the newest version of Pandas. Warnings should no longer appear.
Fixed some bugs regarding min_periods and NaN.
If you find any bugs, please report to github.com/palmbook
"""
# Import Built-Ins
import logging
# Import Third-Party
import pandas as pd
import numpy as np
# Import Homebrew
# Init Logging Facilities
log = logging.getLogger(__name__)
def moving_average(df, n):
"""Calculate the moving average for the given data.
:param df: pandas.DataFrame
:param n:
:return: pandas.DataFrame
"""
MA = pd.Series(df['Close'].rolling(n, min_periods=n).mean(), name='MA_' + str(n))
df = df.join(MA)
return df
def exponential_moving_average(df, n):
"""
:param df: pandas.DataFrame
:param n:
:return: pandas.DataFrame
"""
EMA = pd.Series(df['Close'].ewm(span=n, min_periods=n).mean(), name='EMA_' + str(n))
df = df.join(EMA)
return df
def momentum(df, n):
"""
:param df: pandas.DataFrame
:param n:
:return: pandas.DataFrame
"""
M = pd.Series(df['Close'].diff(n), name='Momentum_' + str(n))
df = df.join(M)
return df
def rate_of_change(df, n):
"""
:param df: pandas.DataFrame
:param n:
:return: pandas.DataFrame
"""
M = df['Close'].diff(n - 1)
N = df['Close'].shift(n - 1)
ROC = pd.Series(M / N, name='ROC_' + str(n))
df = df.join(ROC)
return df
def average_true_range(df, n):
"""
:param df: pandas.DataFrame
:param n:
:return: pandas.DataFrame
"""
i = 0
TR_l = [0]
while i < df.index[-1]:
TR = max(df.loc[i + 1, 'High'], df.loc[i, 'Close']) - min(df.loc[i + 1, 'Low'], df.loc[i, 'Close'])
TR_l.append(TR)
i = i + 1
TR_s = pd.Series(TR_l)
ATR = pd.Series(TR_s.ewm(span=n, min_periods=n).mean(), name='ATR_' + str(n))
df = df.join(ATR)
return df
def bollinger_bands(df, n):
"""
:param df: pandas.DataFrame
:param n:
:return: pandas.DataFrame
"""
MA = pd.Series(df['Close'].rolling(n, min_periods=n).mean())
MSD = pd.Series(df['Close'].rolling(n, min_periods=n).std())
b1 = 4 * MSD / MA
B1 = pd.Series(b1, name='BollingerB_' + str(n))
df = df.join(B1)
b2 = (df['Close'] - MA + 2 * MSD) / (4 * MSD)
B2 = pd.Series(b2, name='Bollinger%b_' + str(n))
df = df.join(B2)
return df
def ppsr(df):
"""Calculate Pivot Points, Supports and Resistances for given data
:param df: pandas.DataFrame
:return: pandas.DataFrame
"""
PP = pd.Series((df['High'] + df['Low'] + df['Close']) / 3)
R1 = pd.Series(2 * PP - df['Low'])
S1 = pd.Series(2 * PP - df['High'])
R2 = pd.Series(PP + df['High'] - df['Low'])
S2 = pd.Series(PP - df['High'] + df['Low'])
R3 = pd.Series(df['High'] + 2 * (PP - df['Low']))
S3 = pd.Series(df['Low'] - 2 * (df['High'] - PP))
psr = {'PP': PP, 'R1': R1, 'S1': S1, 'R2': R2, 'S2': S2, 'R3': R3, 'S3': S3}
PSR = pd.DataFrame(psr)
df = df.join(PSR)
return df
def stochastic_oscillator_k(df):
"""Calculate stochastic oscillator %K for given data.
:param df: pandas.DataFrame
:return: pandas.DataFrame
"""
SOk = pd.Series((df['Close'] - df['Low']) / (df['High'] - df['Low']), name='SO%k')
df = df.join(SOk)
return df
def stochastic_oscillator_d(df, n):
"""Calculate stochastic oscillator %D for given data.
:param df: pandas.DataFrame
:param n:
:return: pandas.DataFrame
"""
SOk = pd.Series((df['Close'] - df['Low']) / (df['High'] - df['Low']), name='SO%k')
SOd = pd.Series(SOk.ewm(span=n, min_periods=n).mean(), name='SO%d_' + str(n))
df = df.join(SOd)
return df
def trix(df, n):
"""Calculate TRIX for given data.
:param df: pandas.DataFrame
:param n:
:return: pandas.DataFrame
"""
EX1 = df['Close'].ewm(span=n, min_periods=n).mean()
EX2 = EX1.ewm(span=n, min_periods=n).mean()
EX3 = EX2.ewm(span=n, min_periods=n).mean()
i = 0
ROC_l = [np.nan]
while i + 1 <= df.index[-1]:
ROC = (EX3[i + 1] - EX3[i]) / EX3[i]
ROC_l.append(ROC)
i = i + 1
Trix = pd.Series(ROC_l, name='Trix_' + str(n))
df = df.join(Trix)
return df
def average_directional_movement_index(df, n, n_ADX):
"""Calculate the Average Directional Movement Index for given data.
:param df: pandas.DataFrame
:param n:
:param n_ADX:
:return: pandas.DataFrame
"""
i = 0
UpI = []
DoI = []
while i + 1 <= df.index[-1]:
UpMove = df.loc[i + 1, 'High'] - df.loc[i, 'High']
DoMove = df.loc[i, 'Low'] - df.loc[i + 1, 'Low']
if UpMove > DoMove and UpMove > 0:
UpD = UpMove
else:
UpD = 0
UpI.append(UpD)
if DoMove > UpMove and DoMove > 0:
DoD = DoMove
else:
DoD = 0
DoI.append(DoD)
i = i + 1
i = 0
TR_l = [0]
while i < df.index[-1]:
TR = max(df.loc[i + 1, 'High'], df.loc[i, 'Close']) - min(df.loc[i + 1, 'Low'], df.loc[i, 'Close'])
TR_l.append(TR)
i = i + 1
TR_s = pd.Series(TR_l)
ATR = pd.Series(TR_s.ewm(span=n, min_periods=n).mean())
UpI = pd.Series(UpI)
DoI = pd.Series(DoI)
PosDI = pd.Series(UpI.ewm(span=n, min_periods=n).mean() / ATR)
NegDI = pd.Series(DoI.ewm(span=n, min_periods=n).mean() / ATR)
ADX = pd.Series((abs(PosDI - NegDI) / (PosDI + NegDI)).ewm(span=n_ADX, min_periods=n_ADX).mean(),
name='ADX_' + str(n) + '_' + str(n_ADX))
df = df.join(ADX)
return df
def macd(df, n_fast, n_slow):
"""Calculate MACD, MACD Signal and MACD difference
:param df: pandas.DataFrame
:param n_fast:
:param n_slow:
:return: pandas.DataFrame
"""
EMAfast = pd.Series(df['Close'].ewm(span=n_fast, min_periods=n_slow).mean())
EMAslow = pd.Series(df['Close'].ewm(span=n_slow, min_periods=n_slow).mean())
MACD = pd.Series(EMAfast - EMAslow, name='MACD_' + str(n_fast) + '_' + str(n_slow))
MACDsign = pd.Series(MACD.ewm(span=9, min_periods=9).mean(), name='MACDsign_' + str(n_fast) + '_' + str(n_slow))
MACDdiff = pd.Series(MACD - MACDsign, name='MACDdiff_' + str(n_fast) + '_' + str(n_slow))
df = df.join(MACD)
df = df.join(MACDsign)
df = df.join(MACDdiff)
return df
def mass_index(df):
"""Calculate the Mass Index for given data.
:param df: pandas.DataFrame
:return: pandas.DataFrame
"""
Range = df['High'] - df['Low']
EX1 = Range.ewm(span=9, min_periods=9).mean()
EX2 = EX1.ewm(span=9, min_periods=9).mean()
Mass = EX1 / EX2
MassI = pd.Series(Mass.rolling(25).sum(), name='Mass Index')
df = df.join(MassI)
return df
def vortex_indicator(df, n):
"""Calculate the Vortex Indicator for given data.
Vortex Indicator described here:
http://www.vortexindicator.com/VFX_VORTEX.PDF
:param df: pandas.DataFrame
:param n:
:return: pandas.DataFrame
"""
i = 0
TR = [0]
while i < df.index[-1]:
Range = max(df.loc[i + 1, 'High'], df.loc[i, 'Close']) - min(df.loc[i + 1, 'Low'], df.loc[i, 'Close'])
TR.append(Range)
i = i + 1
i = 0
VM = [0]
while i < df.index[-1]:
Range = abs(df.loc[i + 1, 'High'] - df.loc[i, 'Low']) - abs(df.loc[i + 1, 'Low'] - df.loc[i, 'High'])
VM.append(Range)
i = i + 1
VI = pd.Series(pd.Series(VM).rolling(n).sum() / pd.Series(TR).rolling(n).sum(), name='Vortex_' + str(n))
df = df.join(VI)
return df
def kst_oscillator(df, r1, r2, r3, r4, n1, n2, n3, n4):
"""Calculate KST Oscillator for given data.
:param df: pandas.DataFrame
:param r1:
:param r2:
:param r3:
:param r4:
:param n1:
:param n2:
:param n3:
:param n4:
:return: pandas.DataFrame
"""
M = df['Close'].diff(r1 - 1)
N = df['Close'].shift(r1 - 1)
ROC1 = M / N
M = df['Close'].diff(r2 - 1)
N = df['Close'].shift(r2 - 1)
ROC2 = M / N
M = df['Close'].diff(r3 - 1)
N = df['Close'].shift(r3 - 1)
ROC3 = M / N
M = df['Close'].diff(r4 - 1)
N = df['Close'].shift(r4 - 1)
ROC4 = M / N
KST = pd.Series(
ROC1.rolling(n1).sum() + ROC2.rolling(n2).sum() * 2 + ROC3.rolling(n3).sum() * 3 + ROC4.rolling(n4).sum() * 4,
name='KST_' + str(r1) + '_' + str(r2) + '_' + str(r3) + '_' + str(r4) + '_' + str(n1) + '_' + str(
n2) + '_' + str(n3) + '_' + str(n4))
df = df.join(KST)
return df
def relative_strength_index(df, n):
"""Calculate Relative Strength Index(RSI) for given data.
:param df: pandas.DataFrame
:param n:
:return: pandas.DataFrame
"""
i = 0
UpI = [0]
DoI = [0]
while i + 1 <= df.index[-1]:
UpMove = df.loc[i + 1, 'High'] - df.loc[i, 'High']
DoMove = df.loc[i, 'Low'] - df.loc[i + 1, 'Low']
if UpMove > DoMove and UpMove > 0:
UpD = UpMove
else:
UpD = 0
UpI.append(UpD)
if DoMove > UpMove and DoMove > 0:
DoD = DoMove
else:
DoD = 0
DoI.append(DoD)
i = i + 1
UpI = pd.Series(UpI)
DoI = pd.Series(DoI)
PosDI = pd.Series(UpI.ewm(span=n, min_periods=n).mean())
NegDI = pd.Series(DoI.ewm(span=n, min_periods=n).mean())
RSI = pd.Series(PosDI / (PosDI + NegDI), name='RSI_' + str(n))
df = df.join(RSI)
return df
def true_strength_index(df, r, s):
"""Calculate True Strength Index (TSI) for given data.
:param df: pandas.DataFrame
:param r:
:param s:
:return: pandas.DataFrame
"""
M = pd.Series(df['Close'].diff(1))
aM = abs(M)
EMA1 = pd.Series(M.ewm(span=r, min_periods=r).mean())
aEMA1 = pd.Series(aM.ewm(span=r, min_periods=r).mean())
EMA2 = pd.Series(EMA1.ewm(span=s, min_periods=s).mean())
aEMA2 = pd.Series(aEMA1.ewm(span=s, min_periods=s).mean())
TSI = pd.Series(EMA2 / aEMA2, name='TSI_' + str(r) + '_' + str(s))
df = df.join(TSI)
return df
def accumulation_distribution(df, n):
"""Calculate Accumulation/Distribution for given data.
:param df: pandas.DataFrame
:param n:
:return: pandas.DataFrame
"""
ad = (2 * df['Close'] - df['High'] - df['Low']) / (df['High'] - df['Low']) * df['Volume']
M = ad.diff(n - 1)
N = ad.shift(n - 1)
ROC = M / N
AD = pd.Series(ROC, name='Acc/Dist_ROC_' + str(n))
df = df.join(AD)
return df
def chaikin_oscillator(df):
"""Calculate Chaikin Oscillator for given data.
:param df: pandas.DataFrame
:return: pandas.DataFrame
"""
ad = (2 * df['Close'] - df['High'] - df['Low']) / (df['High'] - df['Low']) * df['Volume']
Chaikin = pd.Series(ad.ewm(span=3, min_periods=3).mean() - ad.ewm(span=10, min_periods=10).mean(), name='Chaikin')
df = df.join(Chaikin)
return df
def money_flow_index(df, n):
"""Calculate Money Flow Index and Ratio for given data.
:param df: pandas.DataFrame
:param n:
:return: pandas.DataFrame
"""
PP = (df['High'] + df['Low'] + df['Close']) / 3
i = 0
PosMF = [0]
while i < df.index[-1]:
if PP[i + 1] > PP[i]:
PosMF.append(PP[i + 1] * df.loc[i + 1, 'Volume'])
else:
PosMF.append(0)
i = i + 1
PosMF = pd.Series(PosMF)
TotMF = PP * df['Volume']
MFR = pd.Series(PosMF / TotMF)
MFI = pd.Series(MFR.rolling(n, min_periods=n).mean(), name='MFI_' + str(n))
df = df.join(MFI)
return df
def on_balance_volume(df, n):
"""Calculate On-Balance Volume for given data.
:param df: pandas.DataFrame
:param n:
:return: pandas.DataFrame
"""
i = 0
OBV = [0]
while i < df.index[-1]:
if df.loc[i + 1, 'Close'] - df.loc[i, 'Close'] > 0:
OBV.append(df.loc[i + 1, 'Volume'])
if df.loc[i + 1, 'Close'] - df.loc[i, 'Close'] == 0:
OBV.append(0)
if df.loc[i + 1, 'Close'] - df.loc[i, 'Close'] < 0:
OBV.append(-df.loc[i + 1, 'Volume'])
i = i + 1
OBV = pd.Series(OBV)
OBV_ma = pd.Series(OBV.rolling(n, min_periods=n).mean(), name='OBV_' + str(n))
df = df.join(OBV_ma)
return df
def force_index(df, n):
"""Calculate Force Index for given data.
:param df: pandas.DataFrame
:param n:
:return: pandas.DataFrame
"""
F = pd.Series(df['Close'].diff(n) * df['Volume'].diff(n), name='Force_' + str(n))
df = df.join(F)
return df
def ease_of_movement(df, n):
"""Calculate Ease of Movement for given data.
:param df: pandas.DataFrame
:param n:
:return: pandas.DataFrame
"""
EoM = (df['High'].diff(1) + df['Low'].diff(1)) * (df['High'] - df['Low']) / (2 * df['Volume'])
Eom_ma = pd.Series(EoM.rolling(n, min_periods=n).mean(), name='EoM_' + str(n))
df = df.join(Eom_ma)
return df
def commodity_channel_index(df, n):
"""Calculate Commodity Channel Index for given data.
:param df: pandas.DataFrame
:param n:
:return: pandas.DataFrame
"""
PP = (df['High'] + df['Low'] + df['Close']) / 3
CCI = pd.Series((PP - PP.rolling(n, min_periods=n).mean()) / PP.rolling(n, min_periods=n).std(),
name='CCI_' + str(n))
df = df.join(CCI)
return df
def coppock_curve(df, n):
"""Calculate Coppock Curve for given data.
:param df: pandas.DataFrame
:param n:
:return: pandas.DataFrame
"""
M = df['Close'].diff(int(n * 11 / 10) - 1)
N = df['Close'].shift(int(n * 11 / 10) - 1)
ROC1 = M / N
M = df['Close'].diff(int(n * 14 / 10) - 1)
N = df['Close'].shift(int(n * 14 / 10) - 1)
ROC2 = M / N
Copp = pd.Series((ROC1 + ROC2).ewm(span=n, min_periods=n).mean(), name='Copp_' + str(n))
df = df.join(Copp)
return df
def keltner_channel(df, n):
"""Calculate Keltner Channel for given data.
:param df: pandas.DataFrame
:param n:
:return: pandas.DataFrame
"""
KelChM = pd.Series(((df['High'] + df['Low'] + df['Close']) / 3).rolling(n, min_periods=n).mean(),
name='KelChM_' + str(n))
KelChU = pd.Series(((4 * df['High'] - 2 * df['Low'] + df['Close']) / 3).rolling(n, min_periods=n).mean(),
name='KelChU_' + str(n))
KelChD = pd.Series(((-2 * df['High'] + 4 * df['Low'] + df['Close']) / 3).rolling(n, min_periods=n).mean(),
name='KelChD_' + str(n))
df = df.join(KelChM)
df = df.join(KelChU)
df = df.join(KelChD)
return df
def ultimate_oscillator(df):
"""Calculate Ultimate Oscillator for given data.
:param df: pandas.DataFrame
:return: pandas.DataFrame
"""
i = 0
TR_l = [0]
BP_l = [0]
while i < df.index[-1]:
TR = max(df.loc[i + 1, 'High'], df.loc[i, 'Close']) - min(df.loc[i + 1, 'Low'], df.loc[i, 'Close'])
TR_l.append(TR)
BP = df.loc[i + 1, 'Close'] - min(df.loc[i + 1, 'Low'], df.loc[i, 'Close'])
BP_l.append(BP)
i = i + 1
UltO = pd.Series((4 * pd.Series(BP_l).rolling(7).sum() / pd.Series(TR_l).rolling(7).sum()) + (
2 * pd.Series(BP_l).rolling(14).sum() / pd.Series(TR_l).rolling(14).sum()) + (
pd.Series(BP_l).rolling(28).sum() / pd.Series(TR_l).rolling(28).sum()),
name='Ultimate_Osc')
df = df.join(UltO)
return df
def donchian_channel(df, n):
"""Calculate donchian channel of given pandas data frame.
:param df: pandas.DataFrame
:param n:
:return: pandas.DataFrame
"""
i = 0
dc_l = []
while i < n - 1:
dc_l.append(0)
i += 1
i = 0
while i + n - 1 < df.index[-1]:
dc = max(df['High'].ix[i:i + n - 1]) - min(df['Low'].ix[i:i + n - 1])
dc_l.append(dc)
i += 1
donchian_chan = pd.Series(dc_l, name='Donchian_' + str(n))
donchian_chan = donchian_chan.shift(n - 1)
return df.join(donchian_chan)
def standard_deviation(df, n):
"""Calculate Standard Deviation for given data.
:param df: pandas.DataFrame
:param n:
:return: pandas.DataFrame
"""
df = df.join(pd.Series(df['Close'].rolling(n, min_periods=n).std(), name='STD_' + str(n)))
return df