-
Notifications
You must be signed in to change notification settings - Fork 18
/
failurecriteria.py
304 lines (234 loc) · 7.98 KB
/
failurecriteria.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
"""
lamipy project - laminated composites calculations in Python.
failurecriteria.py - Module containing functions for calculating
safety factors according to different criteria.
INPUTS:
lam -- laminate layup characteristics
mat_list -- list with dictionaries of material properties
stress_inf -- stresses at bottom of the layer
stress_sup -- stresses at the top of the layer
strain_inf -- strains at the bottom of the layer
strain_sup -- strains at the top of the layer
OUTPUTS:
fs -- contains safety factors coupled with failure mode
Joao Paulo Bernhardt - September 2017
"""
def tsaiwu_2D(mat_list, lam, stress_inf, stress_sup):
""" Calculates SF and mode according to Tsai-Wu criterion
for the whole laminate.
"""
# Get number of layers
num = len(lam["ang"])
fs = {"fs_inf" : [], "fs_sup" : []}
for i in range(num):
mat_id = lam["mat_id"][i]
mat_prop = mat_list[mat_id]
sig1_sup = stress_sup[0][i]
sig2_sup = stress_sup[1][i]
tau_sup = stress_sup[2][i]
[fs_sup, mode_sup] = fs_tsaiwu_2D(mat_prop, sig1_sup, sig2_sup, tau_sup)
fs["fs_sup"].append([fs_sup, mode_sup])
sig1_inf = stress_inf[0][i]
sig2_inf = stress_inf[1][i]
tau_inf = stress_inf[2][i]
[fs_inf, mode_inf] = fs_tsaiwu_2D(mat_prop, sig1_inf, sig2_inf, tau_inf)
fs["fs_inf"].append([fs_inf, mode_inf])
return fs
def fs_tsaiwu_2D(mat_prop, sig1, sig2, tau):
""" Calculates SF and mode according to Tsai-Wu criterion (layer-wise). """
Xt = mat_prop["Xt"]
Xc = mat_prop["Xc"]
Yt = mat_prop["Yt"]
Yc = mat_prop["Yc"]
S21 = mat_prop["S12"]
f11 = 1/(Xt*Xc)
f22 = 1/(Yt*Yc)
f12 = -1/(2*(Xt*Xc*Yt*Yc)**(1/2))
f66 = 1/(S21**2)
f1 = 1/Xt - 1/Xc
f2 = 1/Yt - 1/Yc
a = f11*sig1**2 + f22*sig2**2 + f66*tau**2 + 2*f12*sig1*sig2
b = f1*sig1 + f2*sig2;
sf = (-b + (b**2 + 4*a)**(1/2))/(2*a)
# Failure mode calculations
H1 = abs(f1*sig1 + f11*sig1**2)
H2 = abs(f2*sig2 + f22*sig2**2)
H6 = abs(f66*tau**2)
if max(H1,H2,H6) == H1:
mode = "fiber" # fiber failure
elif max(H1,H2,H6) == H2:
mode = "matrix" # matrix failure
else:
mode = "shear" # shear failure
# Returns SF & mode
return [sf, mode]
#########################################################################
def maxstress_2D(mat_list, lam, stress_inf, stress_sup):
""" Calculates SF and mode according to Maximum Stress criterion
for the whole laminate.
"""
# Get number of layers
num = len(lam["ang"])
fs = {"fs_inf" : [], "fs_sup" : []}
for i in range(num):
mat_id = lam["mat_id"][i]
mat_prop = mat_list[mat_id]
sig1_sup = stress_sup[0][i]
sig2_sup = stress_sup[1][i]
tau_sup = stress_sup[2][i]
[fs_sup, mode_sup] = fs_maxstress_2D(mat_prop,
sig1_sup,
sig2_sup,
tau_sup)
fs["fs_sup"].append([fs_sup, mode_sup])
sig1_inf = stress_inf[0][i]
sig2_inf = stress_inf[1][i]
tau_inf = stress_inf[2][i]
[fs_inf, mode_inf] = fs_maxstress_2D(mat_prop,
sig1_inf,
sig2_inf,
tau_inf)
fs["fs_inf"].append([fs_inf, mode_inf])
return fs
def fs_maxstress_2D(mat_prop, sig1, sig2, tau):
""" Calc. SF and mode according to Max. Stress criterion (layer-wise). """
Xt = mat_prop["Xt"]
Xc = mat_prop["Xc"]
Yt = mat_prop["Yt"]
Yc = mat_prop["Yc"]
S21 = mat_prop["S12"]
# Verify for sig1
if sig1 > 0:
f_1 = (sig1/Xt)
else:
f_1 = (sig1/-Xc)
# Verify for sig2
if sig2 > 0:
f_2 = (sig2/Yt)
else:
f_2 = (sig2/-Yc)
# Verify for shear
f_s = abs(tau)/S21
f_max = max(f_1, f_2, f_s)
# Find failure mode
if f_max == f_1:
mode = "fiber"
elif f_max == f_2:
mode = "matrix"
else:
mode = "shear"
sf = 1/f_max
# Result FS (1 / maximum of the 3 above)
return [sf, mode]
#########################################################################
def maxstrain_2D(mat_list, lam, strain_inf, strain_sup):
""" Calculates SF and mode according to Maximum Strain criterion
for the whole laminate.
"""
# Get number of layers
num = len(lam["ang"])
fs = {"fs_inf" : [], "fs_sup" : []}
for i in range(num):
mat_id = lam["mat_id"][i]
mat_prop = mat_list[mat_id]
eps1_sup = strain_sup[0][i]
eps2_sup = strain_sup[1][i]
gamma_sup = strain_sup[2][i]
[fs_sup, mode_sup] = fs_maxstrain_2D(mat_prop,
eps1_sup,
eps2_sup,
gamma_sup)
fs["fs_sup"].append([fs_sup, mode_sup])
eps1_inf = strain_inf[0][i]
eps2_inf = strain_inf[1][i]
gamma_inf = strain_inf[2][i]
[fs_inf, mode_inf] = fs_maxstrain_2D(mat_prop,
eps1_inf,
eps2_inf,
gamma_inf)
fs["fs_inf"].append([fs_inf, mode_inf])
return fs
def fs_maxstrain_2D(mat_prop, eps1, eps2, gamma):
""" Calc. SF and mode according to Max. Strain criterion (layer-wise). """
strainXt = mat_prop["Xt"] / mat_prop["E1"]
strainXc = mat_prop["Xc"] / mat_prop["E1"]
strainYt = mat_prop["Yt"] / mat_prop["E2"]
strainYc = mat_prop["Yc"] / mat_prop["E2"]
strainS21 = mat_prop["S12"] / mat_prop["G12"]
# Verify for eps1
if eps1 > 0:
f_1 = (eps1/strainXt)
else:
f_1 = (eps1/-strainXc)
# Verify for eps2
if eps2 > 0:
f_2 = (eps2/strainYt)
else:
f_2 = (eps2/-strainYc)
# Verify for gamma
f_s = abs(gamma)/strainS21
f_max = max(f_1, f_2, f_s)
# Find failure mode
if f_max == f_1:
mode = "fiber"
elif f_max == f_2:
mode = "matrix"
else:
mode = "shear"
sf = 1/f_max
# Result FS (1 / maximum of the 3 above)
return [sf, mode]
#########################################################################
def hashin_2D(mat_list, lam, stress_inf, stress_sup):
""" Calculates SF and mode according to Hashin criterion
for the whole laminate.
"""
# Get number of layers
num = len(lam["ang"])
fs = {"fs_inf" : [], "fs_sup" : []}
for i in range(num):
mat_id = lam["mat_id"][i]
mat_prop = mat_list[mat_id]
sig1_sup = stress_sup[0][i]
sig2_sup = stress_sup[1][i]
tau_sup = stress_sup[2][i]
[fs_sup, mode_sup] = fs_hashin_2D(mat_prop,
sig1_sup,
sig2_sup,
tau_sup)
fs["fs_sup"].append([fs_sup, mode_sup])
sig1_inf = stress_inf[0][i]
sig2_inf = stress_inf[1][i]
tau_inf = stress_inf[2][i]
[fs_inf, mode_inf] = fs_hashin_2D(mat_prop,
sig1_inf,
sig2_inf,
tau_inf)
fs["fs_inf"].append([fs_inf, mode_inf])
return fs
def fs_hashin_2D(mat_prop, sig1, sig2, tau):
""" Calc. SF and mode according to Hashin criterion (layer-wise). """
Xt = mat_prop["Xt"]
Xc = mat_prop["Xc"]
Yt = mat_prop["Yt"]
Yc = mat_prop["Yc"]
S21 = mat_prop["S12"]
# Verify for sig1
if sig1 >= 0:
f_1 = (sig1/Xt)
else:
f_1 = -(sig1/Xc)
# Verify for sig2
if sig2 >= 0:
f_2 = ((sig2/Yt)**2 + (tau/S21)**2)**0.5
else:
f_2 = ((sig2/Yc)**2 + (tau/S21)**2)**0.5
f_max = max(f_1, f_2)
if f_max == f_1:
mode = "fiber"
else:
mode = "matrix"
sf = 1/f_max
# Result FS (1 / maximum of the 3 above)
return [sf, mode]
#########################################################################