-
Notifications
You must be signed in to change notification settings - Fork 0
/
ASTERL1T_proc.py
686 lines (586 loc) · 27.8 KB
/
ASTERL1T_proc.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
# -*- coding: utf-8 -*-
"""
-------------------------------------------------------------------------------
How to Convert ASTER L1T HDF-EOS VNIR/SWIR datasets from Radiance Stored as
Digital Numbers to GeoTIFF files of Top of Atmosphere Reflectance
This tool imports ASTER L1T HDF-EOS files, converts data values from DN to
radiance and TOA reflectance, georeferences, and exports as GeoTIFF files.
-------------------------------------------------------------------------------
Author: Cole Krehbiel
Contact: LPDAAC@usgs.gov
Organization: Land Processes Distributed Active Archive Center
Date last modified: 03-06-2017
-------------------------------------------------------------------------------
DESCRIPTION:
This script demonstrates how to convert ASTER L1T data from Digital Number(DN)
to radiance (w/m2/sr/µm), and from radiance into Top of Atmosphere (TOA)
reflectance.
The script uses an ASTER L1T HDF-EOS file (.hdf) as the input and outputs
georeferenced tagged image file format (GeoTIFF) files for each of the VNIR
and SWIR science datasets contained in the original ASTER L1T file.
Results from these tutorials are output in UTM with WGS84 datum as GeoTIFFs.
The output GeoTIFFs for each band include:
1. Original_AST_L1T_Filename_ImageDataband#.tif
Data is At-Sensor radiance stored as DN
2. Original_AST_L1T_Filename_ImageDataband#_radiance.tif
Data is At-Sensor radiance that has been converted out of DN
3. Original_AST_L1T_Filename_ImageDataband#_reflectance.tif
Data is TOA reflectance
This tool will batch process ASTER L1T files if more than 1 is located in the
working directory. Output directory will be 'inputfiledirectory'+'/output/'
This tool was specifically developed for ASTER L1T HDF-EOS files and should
only be used for those data products.
-------------------------------------------------------------------------------
PREREQUISITES:
Discaimer: This script was tested in the following environments:
- Python: Version 3.4.5 and Version 2.7.12 (Anaconda 4.1.1) on Windows OS
- Geospatial Data Abstraction Library (GDAL): Version 2.0.0 and 2.1.0
Python Packages/Modules:
osgeo with gdal and osr – 2.0.0, 2.1.0
numpy – 1.11.1, 1.12.0
argparse - 1.1
re - 2.2.1
os, glob, datetime, sys, getopt
-------------------------------------------------------------------------------
ADDITIONAL INFORMATION:
LP DAAC ASTER L1T Product Page:
https://lpdaac.usgs.gov/dataset_discovery/aster/aster_products_table/ast_l1t
LP DAAC ASTER L1T User Guide:
https://lpdaac.usgs.gov/sites/default/files/public/product_documentation/
aster_l1t_users_guide.pdf
Search for other tools at https://lpdaac.usgs.gov/
-------------------------------------------------------------------------------
PROCEDURES:
1. Copy/clone ASTERL1T_DN2REF.py from LP DAAC Recipes & Tutorials Repository
2. Download ASTER L1T data from the LP DAAC to a local directory
3. Open a Command Prompt window and navigate to the directory where you
downloaded the ASTERL1T_DN2REF.py script
4. Activate python in the Command Prompt window
1. > activate [python environment name]
5. Once activated, run the script with the following in your Command Prompt:
1. > python ASTERL1T_DN2REF.py [insert input dir with AST_L1T files here]
1. Example of input directory: C:/users/johndoe/ASTERL1T/
-------------------------------------------------------------------------------
"""
# Load necessary packages into Python
from osgeo import gdal, osr
import numpy as np
from datetime import datetime
import os, glob, sys, getopt, argparse, re
def asterDN2RAD(hdf, image_band):
# unit conversion coefficient matrix
ucc = np.matrix(([[0.676, 1.688, 2.25, 0.0],\
[0.708, 1.415, 1.89, 0.0],\
[0.423, 0.862, 1.15, 0.0],\
[0.1087, 0.2174, 0.2900, 0.2900],\
[0.0348, 0.0696, 0.0925, 0.4090],\
[0.0313, 0.0625, 0.0830, 0.3900],\
[0.0299, 0.0597, 0.0795, 0.3320],\
[0.0209, 0.0417, 0.0556, 0.2450],\
[0.0159, 0.0318, 0.0424, 0.2650]]))
# Thome et al. is used, which uses spectral irradiance values from MODTRAN
# Ordered b1, b2, b3N, b4, b5...b9
irradiance = [1848, 1549, 1114, 225.4, 86.63, 81.85, 74.85, 66.49, 59.85]
def dn2rad (x):
rad = (x-1.)*ucc1
return rad
def rad2ref (rad):
ref = (np.pi * rad * (esd * esd)) / (irradiance1 * np.sin(np.pi * sza /
180))
return ref
# Read in the file and metadata
aster = gdal.Open(hdf)
aster_sds = aster.GetSubDatasets()
meta = aster.GetMetadata()
date = meta['CALENDARDATE']
dated = datetime.strptime(date, '%Y%m%d')
day = dated.timetuple()
doy = day.tm_yday
# Calculate Earth-Sun Distance
esd = 1.0 - 0.01672 * np.cos(np.radians(0.9856 * (doy - 4)))
del date, dated, day, doy
# Need SZA--calculate by grabbing solar elevation info
sza = [np.float(x) for x in meta['SOLARDIRECTION'].split(', ')][1]
# Query gain data for each band, needed for UCC
gain_list = [g for g in meta.keys() if 'GAIN' in g] ###### AARON HERE
gain_info = []
for f in range(len(gain_list)):
gain_info1 = meta[gain_list[f]].split(', ')#[0] ###### AARON HERE
gain_info.append(gain_info1)
gain_dict = dict(gain_info)
# Define UL, LR, UTM zone
ul = [np.float(x) for x in meta['UPPERLEFTM'].split(', ')]
lr = [np.float(x) for x in meta['LOWERRIGHTM'].split(', ')]
utm = np.int(meta['UTMZONENUMBER'])
n_s = np.float(meta['NORTHBOUNDINGCOORDINATE'])
# Create UTM zone code numbers
utm_n = [i+32600 for i in range(60)]
utm_s = [i+32700 for i in range(60)]
# Define UTM zone based on North or South
if n_s < 0:
utm_zone = utm_s[utm]
else:
utm_zone = utm_n[utm]
del utm_n, utm_s, utm, meta
## use the 'Image<n>' string to select the subdataset
# print(aster_sds[0])
names = [sd[0].split(',')[0] for sd in aster_sds if image_band in sd[0].split(',')[0]]
aster_sd = names[0]
# print(aster_sd)
#gname = str(aster_sds[e]) #original code
# Maintain original dataset name
#aster_sd = gname.split(',')[0] #original code
vnir = re.search("(VNIR.*)", aster_sd)
swir = re.search("(SWIR.*)", aster_sd)
if vnir or swir:
# Generate output name for tif
# aster_sd2 = aster_sd.split('(')[1]
# aster_sd3 = aster_sd2[1:-1]
# band = aster_sd3.split(':')[-1]
##uncomment these 3 lines if saving data
# out_filename = '{}/{}_{}.tif'.format(out_dir,file_name.split('.hdf')[0],band)
# out_filename_rad = '{}_radiance.tif'.format(out_filename.split('.tif')[0])
# out_filename_ref = '{}_reflectance.tif'.format(out_filename.split('.tif')[0])
#out_filename = out_dir + file_name.split('.hdf')[0] + '_' + band + '.tif'
#out_filename_rad = out_filename.split('.tif')[0] + '_radiance.tif'
#out_filename_ref = out_filename.split('.tif')[0] + '_reflectance.tif'
# Open SDS and create array
#band_ds = gdal.Open(aster_sd3, gdal.GA_ReadOnly)
band = aster_sd.split(':')[-1]
# band_ds = gdal.Open(aster_sd3, gdal.GA_ReadOnly)
band_ds = gdal.Open(aster_sd, gdal.GA_ReadOnly)
sds = band_ds.ReadAsArray().astype(np.uint16)
# del aster_sd, aster_sd2, aster_sd3
# Define extent and provide offset for UTM South zones
if n_s < 0:
ul_y = ul[0] + 10000000
ul_x = ul[1]
lr_y = lr[0] + 10000000
lr_x = lr[1]
# Define extent for UTM North zones
else:
ul_y = ul[0]
ul_x = ul[1]
lr_y = lr[0]
lr_x = lr[1]
# Query raster dimensions and calculate raster x & y resolution
ncol, nrow = sds.shape
y_res = -1 * round((max(ul_y, lr_y)-min(ul_y, lr_y))/ncol)
x_res = round((max(ul_x, lr_x)-min(ul_x, lr_x))/nrow)
# Define UL x and y coordinates based on spatial resolution
ul_yy = ul_y - (y_res/2)
ul_xx = ul_x - (x_res/2)
#------------------------------------------------------------------------------
# Start conversions by band (1-9)
if band == 'ImageData1':
bn = -1 + 1
# Query for gain specified in file metadata (by band)
if gain_dict['01'] == 'HGH':
ucc1 = ucc[bn, 0]
elif gain_dict['01'] == 'NOR':
ucc1 = ucc[bn, 1]
else:
ucc1 = ucc[bn, 2]
if band == 'ImageData2':
bn = -1 + 2
# Query for gain specified in file metadata (by band)
if gain_dict['02'] == 'HGH':
ucc1 = ucc[bn, 0]
elif gain_dict['02'] == 'NOR':
ucc1 = ucc[bn, 1]
else:
ucc1 = ucc[bn, 2]
if band == 'ImageData3N':
bn = -1 + 3
# Query for gain specified in file metadata (by band)
if gain_dict['3N'] == 'HGH':
ucc1 = ucc[bn, 0]
elif gain_dict['3N'] == 'NOR':
ucc1 = ucc[bn, 1]
else:
ucc1 = ucc[bn, 2]
if band == 'ImageData4':
bn = -1 + 4
# Query for gain specified in file metadata (by band)
if gain_dict['04'] == 'HGH':
ucc1 = ucc[bn, 0]
elif gain_dict['04'] == 'NOR':
ucc1 = ucc[bn, 1]
elif gain_dict['04'] == 'LO1':
ucc1 = ucc[bn, 2]
else:
ucc1 = ucc[bn, 3]
if band == 'ImageData5':
bn = -1 + 5
# Query for gain specified in file metadata (by band)
if gain_dict['05'] == 'HGH':
ucc1 = ucc[bn, 0]
elif gain_dict['05'] == 'NOR':
ucc1 = ucc[bn, 1]
elif gain_dict['05'] == 'LO1':
ucc1 = ucc[bn, 2]
else:
ucc1 = ucc[bn, 3]
if band == 'ImageData6':
bn = -1 + 6
# Query for gain specified in file metadata (by band)
if gain_dict['06'] == 'HGH':
ucc1 = ucc[bn, 0]
elif gain_dict['06'] == 'NOR':
ucc1 = ucc[bn, 1]
elif gain_dict['06'] == 'LO1':
ucc1 = ucc[bn, 2]
else:
ucc1 = ucc[bn, 3]
if band == 'ImageData7':
bn = -1 + 7
# Query for gain specified in file metadata (by band)
if gain_dict['07'] == 'HGH':
ucc1 = ucc[bn, 0]
elif gain_dict['07'] == 'NOR':
ucc1 = ucc[bn, 1]
elif gain_dict['07'] == 'LO1':
ucc1 = ucc[bn, 2]
else:
ucc1 = ucc[bn, 3]
if band == 'ImageData8':
bn = -1 + 8
# Query for gain specified in file metadata (by band)
if gain_dict['08'] == 'HGH':
ucc1 = ucc[bn, 0]
elif gain_dict['08'] == 'NOR':
ucc1 = ucc[bn, 1]
elif gain_dict['08'] == 'LO1':
ucc1 = ucc[bn, 2]
else:
ucc1 = ucc[bn, 3]
if band == 'ImageData9':
bn = -1 + 9
# Query for gain specified in file metadata (by band)
if gain_dict['09'] == 'HGH':
ucc1 = ucc[bn, 0]
elif gain_dict['09'] == 'NOR':
ucc1 = ucc[bn, 1]
elif gain_dict['09'] == 'LO1':
ucc1 = ucc[bn, 2]
else:
ucc1 = ucc[bn, 3]
#------------------------------------------------------------------------------
#Set irradiance value for specific band
irradiance1 = irradiance[bn]
# # Generate output Geotiff files
# # First, Radiance (stored as DN)
# driver = gdal.GetDriverByName('GTiff')
# dn = driver.Create(out_filename, nrow,ncol, 1, gdal.GDT_UInt16)
# # Define output GeoTiff CRS and extent properties
# srs = osr.SpatialReference()
# srs.ImportFromEPSG(utm_zone)
# dn.SetProjection(srs.ExportToWkt())
# dn.SetGeoTransform((ul_xx, x_res, 0., ul_yy, 0., y_res))
# # Write SDS array to output GeoTiff
# outband = dn.GetRasterBand(1)
# outband.SetNoDataValue(0)
# outband.WriteArray(sds)
# dn = None
# Convert from DN to Radiance
rad = dn2rad(sds)
rad[rad == dn2rad(0)] = 0
# return the radiance array
return rad
else:
return 'band needs to be valid'
'''
#------------------------------------------------------------------------------
# Define Script and handle errors
def main(argv):
parser = argparse.ArgumentParser()
try:
opts, args = getopt.getopt(argv,"hi:",["input_directory"])
if len(sys.argv[1:])==0:
class MyParser(argparse.ArgumentParser):
def error(self, message):
sys.stderr.write('error: %s\n' % message)
self.print_help()
sys.exit(2)
parser=MyParser()
parser.add_argument('input_directory', nargs='+')
args=parser.parse_args()
elif "'" in sys.argv[1] or '"' in sys.argv[1]:
parser.error('error: Do not include quotes in input directory argument')
elif len(sys.argv) > 2:
parser.error('error: Only 1 Argument is allowed (input_directory)')
elif sys.argv[1][-1] != '/' and sys.argv[1][-1] != '\\':
parser.error('error: Please end your directory location with / or \\')
except getopt.GetoptError:
print('error: Invalid option passed as argument')
print('ASTERL1T_DN2REF.py <input_directory>')
sys.exit(2)
for opt, arg in opts:
if opt == '-h':
print('ASTERL1T_DN2REF.py <input_directory>')
sys.exit()
try:
os.chdir(sys.argv[1])
except FileNotFoundError:
print('error: input_directory provided does not exist or was not found')
sys.exit(2)
#------------------------------------------------------------------------------
# Set input/current working directory from user defined argument
in_dir = sys.argv[1]
os.chdir(in_dir)
# Create and set output directory
out_dir = os.path.normpath((os.path.split(in_dir)[0] + os.sep + 'output' ))
if not os.path.exists(out_dir): os.makedirs(out_dir)
# Create a list of ASTER L1T HDF files in the directory
file_list = glob.glob('AST_L1T_**.hdf')
if len(file_list) == 0:
print('Error: no ASTER L1T hdf files were found in this directory')
sys.exit(2)
ucc = np.matrix(([[0.676, 1.688, 2.25, 0.0],\
[0.708, 1.415, 1.89, 0.0],\
[0.423, 0.862, 1.15, 0.0],\
[0.1087, 0.2174, 0.2900, 0.2900],\
[0.0348, 0.0696, 0.0925, 0.4090],\
[0.0313, 0.0625, 0.0830, 0.3900],\
[0.0299, 0.0597, 0.0795, 0.3320],\
[0.0209, 0.0417, 0.0556, 0.2450],\
[0.0159, 0.0318, 0.0424, 0.2650]]))
# Thome et al. is used, which uses spectral irradiance values from MODTRAN
# Ordered b1, b2, b3N, b4, b5...b9
irradiance = [1848, 1549, 1114, 225.4, 86.63, 81.85, 74.85, 66.49, 59.85]
def dn2rad (x):
rad = (x-1.)*ucc1
return rad
def rad2ref (rad):
ref = (np.pi * rad * (esd * esd)) / (irradiance1 * np.sin(np.pi * sza /
180))
return ref
#------------------------------------------------------------------------------
# Loop through all ASTER L1T hdf files in the directory
for k in range(len(file_list)):
# Maintains original filename convention
file_name = file_list[k]
print('Processing File: ' + file_name + ' (' + str(k+1) + ' out of '
+ str(len(file_list)) + ')')
# Read in the file and metadata
aster = gdal.Open(file_name)
aster_sds = aster.GetSubDatasets()
meta = aster.GetMetadata()
date = meta['CALENDARDATE']
dated = datetime.strptime(date, '%Y%m%d')
day = dated.timetuple()
doy = day.tm_yday
# Calculate Earth-Sun Distance
esd = 1.0 - 0.01672 * np.cos(np.radians(0.9856 * (doy - 4)))
del date, dated, day, doy
# Need SZA--calculate by grabbing solar elevation info
sza = [np.float(x) for x in meta['SOLARDIRECTION'].split(', ')][1]
# Query gain data for each band, needed for UCC
gain_list = [g for g in meta.keys() if 'GAIN' in g] ###### AARON HERE
gain_info = []
for f in range(len(gain_list)):
gain_info1 = meta[gain_list[f]].split(', ')#[0] ###### AARON HERE
gain_info.append(gain_info1)
gain_dict = dict(gain_info)
# Define UL, LR, UTM zone
ul = [np.float(x) for x in meta['UPPERLEFTM'].split(', ')]
lr = [np.float(x) for x in meta['LOWERRIGHTM'].split(', ')]
utm = np.int(meta['UTMZONENUMBER'])
n_s = np.float(meta['NORTHBOUNDINGCOORDINATE'])
# Create UTM zone code numbers
utm_n = [i+32600 for i in range(60)]
utm_s = [i+32700 for i in range(60)]
# Define UTM zone based on North or South
if n_s < 0:
utm_zone = utm_s[utm]
else:
utm_zone = utm_n[utm]
del utm_n, utm_s, utm, meta
#------------------------------------------------------------------------------
# Loop through all ASTER L1T SDS (bands)
for e in range(len(aster_sds)):
gname = str(aster_sds[e])
# Maintain original dataset name
aster_sd = gname.split(',')[0]
vnir = re.search("(VNIR.*)", aster_sd)
swir = re.search("(SWIR.*)", aster_sd)
if vnir or swir:
# Generate output name for tif
aster_sd2 = aster_sd.split('(')[1]
aster_sd3 = aster_sd2[1:-1]
band = aster_sd3.split(':')[-1]
out_filename = '{}/{}_{}.tif'.format(out_dir,file_name.split('.hdf')[0],band)
out_filename_rad = '{}_radiance.tif'.format(out_filename.split('.tif')[0])
out_filename_ref = '{}_reflectance.tif'.format(out_filename.split('.tif')[0])
#out_filename = out_dir + file_name.split('.hdf')[0] + '_' + band + '.tif'
#out_filename_rad = out_filename.split('.tif')[0] + '_radiance.tif'
#out_filename_ref = out_filename.split('.tif')[0] + '_reflectance.tif'
# Open SDS and create array
band_ds = gdal.Open(aster_sd3, gdal.GA_ReadOnly)
sds = band_ds.ReadAsArray().astype(np.uint16)
del aster_sd, aster_sd2, aster_sd3
# Define extent and provide offset for UTM South zones
if n_s < 0:
ul_y = ul[0] + 10000000
ul_x = ul[1]
lr_y = lr[0] + 10000000
lr_x = lr[1]
# Define extent for UTM North zones
else:
ul_y = ul[0]
ul_x = ul[1]
lr_y = lr[0]
lr_x = lr[1]
# Query raster dimensions and calculate raster x & y resolution
ncol, nrow = sds.shape
y_res = -1 * round((max(ul_y, lr_y)-min(ul_y, lr_y))/ncol)
x_res = round((max(ul_x, lr_x)-min(ul_x, lr_x))/nrow)
# Define UL x and y coordinates based on spatial resolution
ul_yy = ul_y - (y_res/2)
ul_xx = ul_x - (x_res/2)
#------------------------------------------------------------------------------
# Start conversions by band (1-9)
if band == 'ImageData1':
bn = -1 + 1
# Query for gain specified in file metadata (by band)
if gain_dict['01'] == 'HGH':
ucc1 = ucc[bn, 0]
elif gain_dict['01'] == 'NOR':
ucc1 = ucc[bn, 1]
else:
ucc1 = ucc[bn, 2]
if band == 'ImageData2':
bn = -1 + 2
# Query for gain specified in file metadata (by band)
if gain_dict['02'] == 'HGH':
ucc1 = ucc[bn, 0]
elif gain_dict['02'] == 'NOR':
ucc1 = ucc[bn, 1]
else:
ucc1 = ucc[bn, 2]
if band == 'ImageData3N':
bn = -1 + 3
# Query for gain specified in file metadata (by band)
if gain_dict['3N'] == 'HGH':
ucc1 = ucc[bn, 0]
elif gain_dict['3N'] == 'NOR':
ucc1 = ucc[bn, 1]
else:
ucc1 = ucc[bn, 2]
if band == 'ImageData4':
bn = -1 + 4
# Query for gain specified in file metadata (by band)
if gain_dict['04'] == 'HGH':
ucc1 = ucc[bn, 0]
elif gain_dict['04'] == 'NOR':
ucc1 = ucc[bn, 1]
elif gain_dict['04'] == 'LO1':
ucc1 = ucc[bn, 2]
else:
ucc1 = ucc[bn, 3]
if band == 'ImageData5':
bn = -1 + 5
# Query for gain specified in file metadata (by band)
if gain_dict['05'] == 'HGH':
ucc1 = ucc[bn, 0]
elif gain_dict['05'] == 'NOR':
ucc1 = ucc[bn, 1]
elif gain_dict['05'] == 'LO1':
ucc1 = ucc[bn, 2]
else:
ucc1 = ucc[bn, 3]
if band == 'ImageData6':
bn = -1 + 6
# Query for gain specified in file metadata (by band)
if gain_dict['06'] == 'HGH':
ucc1 = ucc[bn, 0]
elif gain_dict['06'] == 'NOR':
ucc1 = ucc[bn, 1]
elif gain_dict['06'] == 'LO1':
ucc1 = ucc[bn, 2]
else:
ucc1 = ucc[bn, 3]
if band == 'ImageData7':
bn = -1 + 7
# Query for gain specified in file metadata (by band)
if gain_dict['07'] == 'HGH':
ucc1 = ucc[bn, 0]
elif gain_dict['07'] == 'NOR':
ucc1 = ucc[bn, 1]
elif gain_dict['07'] == 'LO1':
ucc1 = ucc[bn, 2]
else:
ucc1 = ucc[bn, 3]
if band == 'ImageData8':
bn = -1 + 8
# Query for gain specified in file metadata (by band)
if gain_dict['08'] == 'HGH':
ucc1 = ucc[bn, 0]
elif gain_dict['08'] == 'NOR':
ucc1 = ucc[bn, 1]
elif gain_dict['08'] == 'LO1':
ucc1 = ucc[bn, 2]
else:
ucc1 = ucc[bn, 3]
if band == 'ImageData9':
bn = -1 + 9
# Query for gain specified in file metadata (by band)
if gain_dict['09'] == 'HGH':
ucc1 = ucc[bn, 0]
elif gain_dict['09'] == 'NOR':
ucc1 = ucc[bn, 1]
elif gain_dict['09'] == 'LO1':
ucc1 = ucc[bn, 2]
else:
ucc1 = ucc[bn, 3]
#------------------------------------------------------------------------------
#Set irradiance value for specific band
irradiance1 = irradiance[bn]
# Generate output Geotiff files
# First, Radiance (stored as DN)
driver = gdal.GetDriverByName('GTiff')
dn = driver.Create(out_filename, nrow,ncol, 1, gdal.GDT_UInt16)
# Define output GeoTiff CRS and extent properties
srs = osr.SpatialReference()
srs.ImportFromEPSG(utm_zone)
dn.SetProjection(srs.ExportToWkt())
dn.SetGeoTransform((ul_xx, x_res, 0., ul_yy, 0., y_res))
# Write SDS array to output GeoTiff
outband = dn.GetRasterBand(1)
outband.SetNoDataValue(0)
outband.WriteArray(sds)
dn = None
# Convert from DN to Radiance
rad = dn2rad(sds)
rad[rad == dn2rad(0)] = 0
del sds
# Next, Radiance (w/m2/sr/µm)
out_rad = driver.Create(out_filename_rad, nrow, ncol, 1, \
gdal.GDT_Float32)
# Define output GeoTiff CRS and extent properties
out_rad.SetProjection(srs.ExportToWkt())
out_rad.SetGeoTransform((ul_xx, x_res, 0., ul_yy, 0., y_res))
# Write SDS array to output GeoTiff
outband = out_rad.GetRasterBand(1)
outband.SetNoDataValue(0)
outband.WriteArray(rad)
out_rad = None
# Convert from Radiance to TOA Reflectance
ref = rad2ref(rad)
del rad
# Lastly, Reflectance (w/m2/sr/µm)
out_ref = driver.Create(out_filename_ref, nrow, ncol, 1, \
gdal.GDT_Float32)
# Define output GeoTiff CRS and extent properties
out_ref.SetProjection(srs.ExportToWkt())
out_ref.SetGeoTransform((ul_xx, x_res, 0., ul_yy, 0., y_res))
# Write SDS array to output GeoTiff
outband = out_ref.GetRasterBand(1)
outband.SetNoDataValue(0)
outband.WriteArray(ref)
out_ref = None
del band, bn, gname, out_filename, \
out_filename_rad, out_filename_ref, ref
if __name__ == "__main__":
main(sys.argv[1:])
'''