python tanh.py
Microjax is function transformation engine like JAX or MLX,
it’s got forward mode and reverse mode automatic differentiation support!, and support for nested structures (PyTrees). 🌳
Blog: https://huggingface.co/blog/joey00072/microjax
microjax.py
: The magic of auto-diff happens here.pytree.py
: 🌳 Flatten and unflatten those nested data structuresnn.py
: Build a simple neural net and watch it learn XOR! 🧠tanh.py
: Visualize thetanh
function and its first four derivatives. 📈picojax.py
: A extra small version of microjax.py (only +,* ops)
from microjax import grad
def f(x):
return x*x+2*x+3
print(f"f(3.0) = {f(3.0)}")
print(f"f'(3.0) = {grad(f)(3.0)}")
❯ python dev.py
f(3.0) = 18.0
f'(3.0) = 8.0
❯ python nn.py
0 => 0.50
1 => 0.34
1 => 0.44
0 => 0.32
--
loss: 0.2760428769255213
loss: 0.004209124188658117
loss: 0.000980696758933267
loss: 0.0005531283006194049
loss: 0.0003506475890801604
loss: 0.00023928890318040665
loss: 0.00017250868939842852
loss: 0.00012976140589010524
loss: 0.00010094563548150575
loss: 8.068691802714326e-05
--
0 => 0.00
1 => 0.99
1 => 0.99
0 => 0.01
Look into microjax.py
❯ python microjax.py
## Forward Mode Automatic Differentiation (JVP) ##
f(x) = 118.87663200000001
f'(x) = 103.2964
f''(x) = 60.519999999999996
f'''(x) = 18.0
------------------------------------------------------------------------------
## Reverse Mode Automatic Differentiation (VJP) ##
f(x) = 118.87663200000001
f'(x) = 103.2964
f''(x) = 60.519999999999996
f'''(x) = 18
------------------------------------------------------------------------------
## Composition of Forward and Backward ##
Forward on Backward 60.519999999999996
Backward on Forward 60.519999999999996
------------------------------------------------------------------------------
## pytree.py ##
{'hi': 0.01493120808257803, 'there': [1.0, 0.0]}
------------------------------------------------------------------------------
MicroJAX: 0.01493120808257803
JAX: 0.014931838
- Only supports scalars
- slicing broadcating is NOT supported, but you can use numpy instead scalers
- Adding ndarray support add complexity to the codebase, Keeping it Micro
MIT License.