Skip to content

Commit

Permalink
deleted unnecessary indentation
Browse files Browse the repository at this point in the history
  • Loading branch information
emilyriehl committed Sep 23, 2023
1 parent f38feb7 commit 1a14276
Showing 1 changed file with 64 additions and 61 deletions.
125 changes: 64 additions & 61 deletions src/simplicial-hott/04-extension-types.rzk.md
Original file line number Diff line number Diff line change
Expand Up @@ -268,7 +268,7 @@ We refer to another form as an "extension extensionality" axiom.
Weak extension extensionality implies extension extensionality; this is the
context of RS17 Proposition 4.8 (i). We prove this in a series of lemmas. The
`ext-projection-temp` function is a (hopefully temporary) helper that explicitly
cases an extension type to a function type.
cases an extension type to a function type.

```rzk
#section rs-4-8
Expand All @@ -288,27 +288,28 @@ cases an extension type to a function type.
#define is-contr-ext-based-paths uses (weak-ext-ext f)
: is-contr ((t : ψ ) → (Σ (y : A t) ,
((ext-projection-temp) t = y))[ϕ t ↦ (a t , refl)])
:= weak-ext-ext
( I )
( ψ )
( ϕ )
( \ t → (Σ (y : A t) , ((ext-projection-temp) t = y)))
( \ t →
is-contr-based-paths (A t ) ((ext-projection-temp) t))
( \ t → (a t , refl) )

#define is-contr-ext-codomain-based-paths uses (weak-ext-ext f)
: is-contr
( ( t : ψ) →
( Σ (y : A t) , (y = ext-projection-temp t))
[ ϕ t ↦ (a t , refl)])
:= weak-ext-ext
( I)
( ψ)
( ϕ)
( \ t → (Σ (y : A t) , y = ext-projection-temp t))
( \ t → is-contr-codomain-based-paths (A t) (ext-projection-temp t))
( \ t → (a t , refl))
:=
weak-ext-ext
( I )
( ψ )
( ϕ )
( \ t → (Σ (y : A t) , ((ext-projection-temp) t = y)))
( \ t →
is-contr-based-paths (A t ) ((ext-projection-temp) t))
( \ t → (a t , refl) )

#define is-contr-ext-codomain-based-paths uses (weak-ext-ext f)
: is-contr
( ( t : ψ) →
( Σ (y : A t) , (y = ext-projection-temp t)) [ ϕ t ↦ (a t , refl)])
:=
weak-ext-ext
( I)
( ψ)
( ϕ)
( \ t → (Σ (y : A t) , y = ext-projection-temp t))
( \ t → is-contr-codomain-based-paths (A t) (ext-projection-temp t))
( \ t → (a t , refl))

#define is-contr-based-paths-ext uses (weak-ext-ext)
: is-contr (Σ (g : (t : ψ ) → A t [ϕ t ↦ a t]) ,
Expand Down Expand Up @@ -347,10 +348,10 @@ The map that defines extension extensionality
((t : ψ ) → (f t = g t) [ϕ t ↦ refl]))
:=
total-map
( (t : ψ ) → A t [ϕ t ↦ a t])
( \ g → (f = g))
( \ g → (t : ψ ) → (f t = g t) [ϕ t ↦ refl])
( ext-htpy-eq I ψ ϕ A a f)
( (t : ψ ) → A t [ϕ t ↦ a t])
( \ g → (f = g))
( \ g → (t : ψ ) → (f t = g t) [ϕ t ↦ refl])
( ext-htpy-eq I ψ ϕ A a f)
```

The total bundle version of extension extensionality
Expand All @@ -370,14 +371,14 @@ The total bundle version of extension extensionality
(ext-ext-weak-ext-ext-map I ψ ϕ A a f)
:=
is-equiv-are-contr
((Σ (g : (t : ψ ) → A t [ϕ t ↦ a t]), (f = g)) )
( Σ (g : (t : ψ ) → A t [ϕ t ↦ a t]) ,
( Σ (g : (t : ψ ) → A t [ϕ t ↦ a t]), (f = g) )
( Σ (g : (t : ψ ) → A t [ϕ t ↦ a t]) ,
((t : ψ ) → (f t = g t) [ϕ t ↦ refl]))
( is-contr-based-paths
( (t : ψ ) → A t [ϕ t ↦ a t])
( f ))
( is-contr-based-paths-ext weak-ext-ext I ψ ϕ A a f)
( ext-ext-weak-ext-ext-map I ψ ϕ A a f)
( is-contr-based-paths
( (t : ψ ) → A t [ϕ t ↦ a t])
( f ))
( is-contr-based-paths-ext weak-ext-ext I ψ ϕ A a f)
( ext-ext-weak-ext-ext-map I ψ ϕ A a f)
```

Finally, using equivalences between families of equivalences and bundles of
Expand Down Expand Up @@ -412,7 +413,7 @@ extension extensionality that we get by extraccting the fiberwise equivalence.
```rzk title="RS17 Proposition 4.8(i)"
#define ext-ext-weak-ext-ext
(weak-ext-ext : WeakExtExt)
: ExtExt
: ExtExt
:= \ I ψ ϕ A a f g →
ext-ext-weak-ext-ext' weak-ext-ext I ψ ϕ A a f g
```
Expand Down Expand Up @@ -478,25 +479,28 @@ equivalences of extension types. For simplicity, we extend from `#!rzk BOT`.
( b)
( \ t → second (second (second (famequiv t))) (b t))))))
```
We have a homotopy extension property.

The following code is another instantiation of casting, necessary for some arguments below.
We have a homotopy extension property.

The following code is another instantiation of casting, necessary for some
arguments below.

```rzk
#define restrict
( I : CUBE)
( ψ : I → TOPE)
( ϕ : ψ → TOPE)
( A : ψ → U)
( a : (t : ϕ) → A t)
( f : (t : ψ) → A t [ϕ t ↦ a t])
: (t : ψ ) → A t
:= f
( I : CUBE)
( ψ : I → TOPE)
( ϕ : ψ → TOPE)
( A : ψ → U)
( a : (t : ϕ) → A t)
( f : (t : ψ) → A t [ϕ t ↦ a t])
: (t : ψ ) → A t
:= f

```

The homotopy extension property follows from a straightforward application of the axiom of choice
to the point of contraction for weak extension extensionality.
The homotopy extension property follows from a straightforward application of
the axiom of choice to the point of contraction for weak extension
extensionality.

```rzk title="RS17 Proposition 4.10"
#define htpy-ext-property
Expand All @@ -506,29 +510,28 @@ to the point of contraction for weak extension extensionality.
( ϕ : ψ → TOPE)
( A : ψ → U)
( b : (t : ψ) → A t)
( a : (t : ϕ) → A t)
( e : (t : ϕ) → a t = b t)
: Σ (a' : (t : ψ) → A t [ϕ t ↦ a t]) ,
( a : (t : ϕ) → A t)
( e : (t : ϕ) → a t = b t)
: Σ (a' : (t : ψ) → A t [ϕ t ↦ a t]) ,
((t : ψ) → (restrict I ψ ϕ A a a' t = b t) [ϕ t ↦ e t])
:=
first
( axiom-choice
:=
first
( axiom-choice
( I)
( ψ)
( ϕ)
( A)
( ψ)
( ϕ)
( A)
( \ t y → y = b t)
( a)
( e))
( first
( weak-ext-ext
( a)
( e))
( first
( weak-ext-ext
( I)
( ψ)
( ϕ)
( \ t → (Σ (y : A t) , y = b t))
( \ t → is-contr-codomain-based-paths
( \ t → is-contr-codomain-based-paths
( A t)
( b t))
( \ t → ( a t , e t) )))
```

0 comments on commit 1a14276

Please sign in to comment.