Skip to content

Latest commit

 

History

History
49 lines (36 loc) · 1.36 KB

MaxDoubleSliceSum.md

File metadata and controls

49 lines (36 loc) · 1.36 KB

A non-empty zero-indexed array A consisting of N integers is given.

A triplet (X, Y, Z), such that 0 ≤ X < Y < Z < N, is called a double slice.

The sum of double slice (X, Y, Z) is the total of A[X + 1] + A[X + 2] + ... + A[Y − 1] + A[Y + 1] + A[Y + 2] + ... + A[Z − 1].

For example, array A such that:

A[0] = 3
A[1] = 2
A[2] = 6
A[3] = -1
A[4] = 4
A[5] = 5
A[6] = -1
A[7] = 2

contains the following example double slices:

double slice (0, 3, 6), sum is 2 + 6 + 4 + 5 = 17, double slice (0, 3, 7), sum is 2 + 6 + 4 + 5 − 1 = 16, double slice (3, 4, 5), sum is 0. The goal is to find the maximal sum of any double slice.

Write a function:

class Solution { public int solution(int[] A); }

that, given a non-empty zero-indexed array A consisting of N integers, returns the maximal sum of any double slice.

For example, given:

A[0] = 3
A[1] = 2
A[2] = 6
A[3] = -1
A[4] = 4
A[5] = 5
A[6] = -1
A[7] = 2

the function should return 17, because no double slice of array A has a sum of greater than 17.

Assume that:

N is an integer within the range [3..100,000]; each element of array A is an integer within the range [−10,000..10,000]. Complexity:

expected worst-case time complexity is O(N); expected worst-case space complexity is O(N), beyond input storage (not counting the storage required for input arguments).