-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathswrl-rules.py
74 lines (58 loc) · 2.62 KB
/
swrl-rules.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
# -*- coding: utf-8 -*-
"""
Example of classification using SWRL rules
Martinez-Gil, J., Buchgeher, G., Gabauer, D., Freudenthaler, B., Filipiak, D., & Fensel, A. (2022). Root cause analysis in the industrial domain using knowledge graphs: A case study on power transformers. Procedia Computer Science, 200, 944-953.
@author: Jorge Martinez-Gil
"""
import pandas as pd
from owlready2 import *
from rdflib import URIRef
# Load the data (this should be loaded from external file)
data = {
'Hydrogen': [2845, 12886, 2820, 1099, 3210, 13500, 10200],
'Oxigen': [5860, 61, 16400, 70, 3570, 343, 11900],
'Nitrogen': [27842, 25041, 56300, 37520, 47900, 36500, 33700],
'Methane': [7406, 877, 144, 545, 160, 3150, 573],
'CO': [32, 83, 257, 184, 360, 113, 87],
'CO2': [1344, 864, 1080, 1402, 2130, 984, 611],
'Ethylene': [16684, 4, 206, 6, 4, 5, 0],
'Ethane': [5467, 305, 11, 230, 43, 1230, 162],
'Acethylene': [7, 0, 2190, 0, 4, 1, 0],
'DBDS': [19, 45, 1, 87, 1, 1, 1],
'Power factor': [1, 1, 1, 4.58, 0.77, 4.93, 3.53],
'Interfacial V': [45, 45, 39, 33, 44, 37, 45],
'Dielectric rigidity': [55, 55, 52, 49, 55, 52, 55],
'Water content': [0, 0, 11, 5, 3, 6, 5],
'Health index': [95.2, 85.5, 85.3, 85.3, 85.2, 75.6, 75.6],
'Life expectation': [19, 19, 19, 6, 6, 6, 6]
}
df = pd.DataFrame(data)
# Create a new ontology
onto = get_ontology("http://test.org/onto.owl")
with onto:
class HealthIndex(DataProperty, FunctionalProperty):
domain = [Thing]
range = [float]
class PowerFactor(DataProperty, FunctionalProperty):
domain = [Thing]
range = [float]
class LifeExpectation(DataProperty, FunctionalProperty):
domain = [Thing]
range = [str]
class Failure(Thing):
pass
class NonFailure(Thing):
pass
# Add the individuals and their properties to the ontology
for index, row in df.iterrows():
individual = Thing(f"Individual{index}", namespace=onto)
individual.HealthIndex = float(row['Health index'])
individual.PowerFactor = float(row['Power factor'])
individual.LifeExpectation = str(row['Life expectation'])
print(f"Individual{index} added to the ontology")
Imp().set_as_rule('LifeExpectation(?p, ?val) ^ lessThan(?val, 22) -> Failure(?p)')
Imp().set_as_rule('HealthIndex(?p, ?val) ^ lessThan(?val, 85) -> NonFailure(?p)')
Imp().set_as_rule('PowerFactor(?p, ?val) ^ lessThan(?val, 1) -> NonFailure(?p)')
sync_reasoner_pellet(infer_property_values = True, infer_data_property_values = True)
print(list(onto.search(is_a = Failure)))
print(list(onto.search(is_a = NonFailure)))