From 46d23f5d8b8a55956db561dea5ad05afb47dc3ed Mon Sep 17 00:00:00 2001 From: Youssef <> Date: Fri, 21 Jun 2024 09:31:25 +0200 Subject: [PATCH] simple improvements --- _posts/2024-04-23-domino-and-tromino-tiling.markdown | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/_posts/2024-04-23-domino-and-tromino-tiling.markdown b/_posts/2024-04-23-domino-and-tromino-tiling.markdown index 3be9da9..1085f6d 100644 --- a/_posts/2024-04-23-domino-and-tromino-tiling.markdown +++ b/_posts/2024-04-23-domino-and-tromino-tiling.markdown @@ -33,14 +33,14 @@ For $n = 4$, there are 11 ways: ![](/images/4-board_tiling.svg) {: refdef} -*Figure 3: Possible tilings of a $2 \times 4$ board - 11 in total* +*Figure 3: Possible tilings of a $2 \times 4$ board (11 in total)* {: refdef} ### A bit of maths Now, if we let $T_k$ be the number of ways of tiling a $2 \times k$ board, we can think of $T_k$ in terms of smaller instances (i.e. in terms of $T_{k-i}$ where $i \in 1, \dots, k-1$). This leads us to the following recursive formula: -$T_k = T_{k-1} + T_{k-2} + 2 \times T_{k-3} + 2 \times T_{k-4} + \dots + 2 \times T_1 :(1)$ +$T_k = T_{k-1} + T_{k-2} + 2 \times (T_{k-3} + \dots + T_1) :(1)$ $\space \space \space \space = T_{k-1} + T_{k-2} + 2 \times \sum_{i=3}^{k-1}T_{k-i} :(2)$