-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathdata.py
80 lines (62 loc) · 2.76 KB
/
data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
import os
import numpy as np
from PIL import Image
import torch
import torch.utils.data as data
import torchvision.transforms as transforms
from torchvision.datasets.utils import download_and_extract_archive
from torchvision.datasets.vision import VisionDataset
class BSDS300_images(VisionDataset):
basedir = "BSDS300"
train_file = "iids_train.txt"
test_file = "iids_test.txt"
url = "https://www2.eecs.berkeley.edu/Research/Projects/CS/vision/bsds/BSDS300-images.tgz"
archive_filename = "BSDS300-images.tgz"
def __init__(self, root, sigma, train=True, transform=None, download=False):
super(BSDS300_images, self).__init__(root, transform=transform)
self.train = train
self.sigma = sigma / 255
self.root = root
images_basefolder = os.path.join(root, self.basedir, "images")
subfolder = "train" if self.train else "test"
self.image_folder = os.path.join(images_basefolder, subfolder)
id_file = self.train_file if self.train else self.test_file
self.id_path = os.path.join(root, self.basedir, id_file)
if download:
self.download()
if not self._check_exists():
raise RuntimeError('Dataset not found.' +
' You can use download=True to download it')
self.ids = np.loadtxt(self.id_path).astype('int')
self.transform = transform
def _check_exists(self):
return os.path.exists(self.id_path) and os.path.exists(self.image_folder)
def download(self):
if self._check_exists():
print("Files already downloaded")
return
download_and_extract_archive(self.url, download_root=self.root, filename=self.archive_filename)
def __len__(self):
return len(self.ids)
def __getitem__(self, idx):
img_name = os.path.join(self.image_folder, str(self.ids[idx])) + ".jpg"
im = Image.open(img_name)
if self.transform:
im = self.transform(im)
im_noisy = im + torch.randn(im.size()) * self.sigma
return im_noisy, im
class BerkeleyLoader(data.DataLoader):
def __init__(self, sigma, train=True, **kwargs):
if train:
transform = transforms.Compose([
transforms.RandomCrop(90, pad_if_needed=True, padding_mode="reflect"),
transforms.ToTensor()
])
else:
transform = transforms.ToTensor()
dataset = BSDS300_images("data", sigma, train=train, transform=transform, download=True)
super(BerkeleyLoader, self).__init__(dataset, **kwargs)
if __name__ == "__main__":
train_data = BerkeleyLoader(25, train=True, batch_size=10)
for im_noisy, im in train_data:
print(im_noisy.size(), im.size())