-
Notifications
You must be signed in to change notification settings - Fork 0
/
server.R
303 lines (277 loc) · 12.4 KB
/
server.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
#
# This is the server logic of a Shiny web application. You can run the
# application by clicking 'Run App' above.
#
# Find out more about building applications with Shiny here:
#
# http://shiny.rstudio.com/
#
library(shiny)
library(tidyverse)
library(scales)
library(timetk)
library(plotly)
library(knitr)
library(kableExtra)
# Loading data and analysis results
source("main_tab.R")
source("Ascent_tab.R")
source("Sanctuary_tab.R")
# Define server logic required to draw a histogram
function(input, output, session) {
# Main table
output$main_table <- function() ({
main_table <- kbl(main_table) |>
kable_styling(bootstrap_options = c("striped"),
full_width = FALSE) |>
add_header_above(c(" ", " ", "Weekly Average" = 2, "Year-over-year" = 2)) |>
column_spec(1, bold = T)
main_table
})
# Year-to-date table
output$year_to_date_table <- function() ({
year_to_date_table <- kbl(ytd_table) |>
kable_styling(bootstrap_options = c("striped"),
full_width = FALSE) |>
add_header_above(c(" ", "Year-to-date weekly average" = 2, " ", " ")) |>
column_spec(1, bold = T)
year_to_date_table
})
# Reactive data set selection
data_reactive <- reactive({
if (input$dataset == "in_person")
in_person_data
else if (input$dataset == "online")
online
else
combined
})
# Reactive month selection
time_period <- reactive({
if (input$time == "jan")
1
else if (input$time == "feb")
2
else if (input$time == "mar")
3
else if (input$time == "apr")
4
else if (input$time == "may")
5
else if (input$time == "jun")
6
else if (input$time == "jul")
7
else if (input$time == "aug")
8
else if (input$time == "sept")
9
else if (input$time == "oct")
10
else if (input$time == "nov")
11
else if (input$time == "dec")
12
else
1:12
})
# Seasonal plot, main tab
output$p <- renderPlotly({
data_set = data_reactive() %>%
filter(lubridate::month(Date) %in% time_period())
ggplot(data = data_set, aes(x = Date, y = attendance)) +
theme_classic() +
geom_point() +
geom_line() +
geom_smooth(method = "loess", formula = "y~x", col = "red") +
labs(title = "Weekly average attendance by month",
x = "Date",
y = "Average attendance")
})
# Time series plot, main tab
output$s <- renderPlotly({
data_set = data_reactive()
s <- data_set %>%
mutate(Year = factor(year(Date)),
Date = update(Date, year = 1)) %>%
ggplot(aes(x = Date, y = attendance, colour = Year)) +
scale_x_date(date_breaks = "1 month", date_labels = "%b") +
geom_line(aes(group = Year), colour = "black", alpha = 0.1) +
geom_line(data = function(x) filter(x, Year == Previous_year), lwd = 0.5) +
geom_line(data = function(x) filter(x, Year == Current_year), lwd = 1) +
theme_bw() +
labs(y = "Average attendance per week",
x = "Month")
ggplotly(s)
})
# Ascent tab output
# Ascent main table
output$Ascent_main_table <- function() ({
Ascent_main_table <- kbl(Ascent_main_table) |>
kable_styling(bootstrap_options = c("striped"),
full_width = FALSE) |>
add_header_above(c(" ", " ", "Weekly Average" = 2, "Year-over-year" = 2)) |>
column_spec(1, bold = T)
Ascent_main_table
})
# Ascent year-to-date table
output$Ascent_ytd_table <- function() ({
Ascent_ytd_table <- kbl(Ascent_ytd_table) |>
kable_styling(bootstrap_options = c("striped"),
full_width = FALSE) |>
add_header_above(c(" ", "Weekly Average" = 2, " ", " ")) |>
column_spec(1, bold = T)
Ascent_ytd_table
})
# Ascent data set reactive
Ascent_data_reactive <- reactive({
if (input$Ascent_dataset == "Ascent_in_person")
Ascent_in_person
else if (input$Ascent_dataset == "Ascent_online")
Ascent_online
else
Ascent_total
})
# Ascent month selection reactive
Ascent_time_period <- reactive({
if (input$Ascent_time == "jan")
1
else if (input$Ascent_time == "feb")
2
else if (input$Ascent_time == "mar")
3
else if (input$Ascent_time == "apr")
4
else if (input$Ascent_time == "may")
5
else if (input$Ascent_time == "jun")
6
else if (input$Ascent_time == "jul")
7
else if (input$Ascent_time == "aug")
8
else if (input$Ascent_time == "sept")
9
else if (input$Ascent_time == "oct")
10
else if (input$Ascent_time == "nov")
11
else if (input$Ascent_time == "dec")
12
else
1:12
})
# Ascent seasonal plot
output$Ascent_plot <- renderPlotly({
Ascent_data_set = Ascent_data_reactive() %>%
filter(lubridate::month(Date) %in% Ascent_time_period())
ggplot(data = Ascent_data_set, aes(x = Date, y = attendance)) +
theme_classic() +
geom_point() +
geom_line() +
geom_smooth(method = "loess", formula = "y~x", col = "red") +
labs(title = "Weekly average attendance by month",
x = "Date",
y = "Average attendance")
})
# Ascent time series plot
output$Ascent_s <- renderPlotly({
Ascent_this_year <- Ascent_Current_year
Ascent_previous_year <- Ascent_Previous_year
Ascent_data_set = Ascent_data_reactive()
Ascent_s <- Ascent_data_set %>%
mutate(Year = factor(year(Date)),
Date = update(Date, year = 1)) %>%
ggplot(aes(x = Date, y = attendance, colour = Year)) +
scale_x_date(date_breaks = "1 month", date_labels = "%b") +
geom_line(aes(group = Year), colour = "black", alpha = 0.1) +
geom_line(data = function(x) filter(x, Year == Ascent_previous_year), lwd = 0.5) +
geom_line(data = function(x) filter(x, Year == Ascent_this_year), lwd = 1) +
theme_bw() +
labs(y = "Average attendance per week",
x = "Month")
ggplotly(Ascent_s)
})
# Sanctuary tab output
output$Sanctuary_main_table <- function() ({
Sanctuary_main_table <- kbl(Sanctuary_main_table) |>
kable_styling(bootstrap_options = c("striped"),
full_width = FALSE) |>
add_header_above(c(" ", " ", "Weekly Average" = 2, "Year-over-year" = 2)) |>
column_spec(1, bold = T)
Sanctuary_main_table
})
output$Sanctuary_ytd_table <- function() ({
Sanctuary_ytd_table <- kbl(Sanctuary_ytd_table) |>
kable_styling(bootstrap_options = c("striped"),
full_width = FALSE) |>
add_header_above(c(" ", "Weekly Average" = 2, " ", " ")) |>
column_spec(1, bold = T)
Sanctuary_ytd_table
})
Sanctuary_data_reactive <- reactive({
if (input$Sanctuary_dataset == "Sanctuary_in_person")
Sanctuary_in_person
else if (input$Sanctuary_dataset == "Sanctuary_online")
Sanctuary_online
else
Sanctuary_total
})
Sanctuary_time_period <- reactive({
if (input$Sanctuary_time == "jan")
1
else if (input$Sanctuary_time == "feb")
2
else if (input$Sanctuary_time == "mar")
3
else if (input$Sanctuary_time == "apr")
4
else if (input$Sanctuary_time == "may")
5
else if (input$Sanctuary_time == "jun")
6
else if (input$Sanctuary_time == "jul")
7
else if (input$Sanctuary_time == "aug")
8
else if (input$Sanctuary_time == "sept")
9
else if (input$Sanctuary_time == "oct")
10
else if (input$Sanctuary_time == "nov")
11
else if (input$Sanctuary_time == "dec")
12
else
1:12
})
output$Sanctuary_plot <- renderPlotly({
Sanctuary_data_set = Sanctuary_data_reactive() %>%
filter(lubridate::month(Date) %in% Sanctuary_time_period())
ggplot(data = Sanctuary_data_set, aes(x = Date, y = attendance)) +
theme_classic() +
geom_point() +
geom_line() +
geom_smooth(method = "loess", formula = "y~x", col = "red") +
labs(title = "Weekly average attendance by month",
x = "Date",
y = "Average attendance")
})
output$Sanctuary_s <- renderPlotly({
this_year <- Sanctuary_Current_year
previous_year <- Sanctuary_Previous_year
Sanctuary_data_set = Sanctuary_data_reactive()
Sanctuary_s <- Sanctuary_data_set %>%
mutate(Year = factor(year(Date)),
Date = update(Date, year = 1)) %>%
ggplot(aes(x = Date, y = attendance, colour = Year)) +
scale_x_date(date_breaks = "1 month", date_labels = "%b") +
geom_line(aes(group = Year), colour = "black", alpha = 0.1) +
geom_line(data = function(x) filter(x, Year == previous_year), lwd = 0.5) +
geom_line(data = function(x) filter(x, Year == this_year), lwd = 1) +
theme_bw() +
labs(y = "Average attendance per week",
x = "Month")
ggplotly(Sanctuary_s)
})
}