-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtf-explain-visualize2.py
51 lines (43 loc) · 1.49 KB
/
tf-explain-visualize2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
from argparse import ArgumentParser
from os import path
import numpy as np
import tf_explain
from cv2 import imread, cvtColor, resize, COLOR_BGR2RGB
from tensorflow.keras.models import load_model
from utils.constants import CLASSES, IMG_DIMENSIONS
parser = ArgumentParser()
parser.add_argument("model", help=f"specify model ")
parser.add_argument("-c", "--classindex",default=0,type=int)
parser.add_argument('-d', '--dataset',default="dataset")
args = vars(parser.parse_args())
data = []
from os import listdir
from os.path import isfile, join
mypath = args['dataset']
onlyfiles = [f for f in listdir(mypath) if isfile(join(mypath, f))]
for f in onlyfiles:
print(f)
image = imread(path.join(args['dataset'], f))
image = cvtColor(image, COLOR_BGR2RGB)
image = resize(image, IMG_DIMENSIONS)
data.append(image)
data = np.array(data) / 255.0
explainer = tf_explain.core.grad_cam.GradCAM()
data = (data, None)
model = load_model(args['model'])
for layer in model.layers:
if "conv" in layer.name.lower():
gradcam_layer=layer.name
# Start explainer
grid = explainer.explain(data, model, class_index=args['classindex'], layer_name=gradcam_layer) #
from datetime import datetime
now = datetime.now()
current_time = now.strftime("%H_%M_%S")
saveloc = mypath
filename = f"{current_time}_class_{CLASSES[args['classindex']]}"
filename += ".jpg"
try:
explainer.save(grid,f"{saveloc}", f"{filename}")
print(f"GradCam image created and saved to {saveloc}/{filename}")
except:
print("F")