-
Notifications
You must be signed in to change notification settings - Fork 2
/
PW_analyze_results.py
920 lines (761 loc) · 24.8 KB
/
PW_analyze_results.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
from skimage.segmentation import find_boundaries
from skimage.measure import regionprops
from pydensecrf.utils import create_pairwise_bilateral
from pydensecrf.utils import create_pairwise_gaussian
import pydensecrf.densecrf as dcrf
#import matplotlib
#matplotlib.use('Agg')
from matplotlib import pyplot as plt
import numpy as np
import linecache
import shutil
import pickle
import scipy
import nrrd
import yaml
import pdb
import os
import tensorflow as tf
import patch_utils
import PW_NNAL
import PW_NN
import PW_AL
import NN
def get_queries(expr, method_name):
"""Simply giving back the queries generated
in different queries separately
"""
Qs = []
Q_dir = os.path.join(
expr.root_dir,
method_name, 'queries')
Q_files = os.listdir(Q_dir)
file_inds = [int(Q_files[i].split('.')[0]) for
i in range(len(Q_files))]
sorted_inds = np.argsort(file_inds)
for ind in sorted_inds:
fullpath = os.path.join(
Q_dir, Q_files[ind])
Qs += [np.int32(np.loadtxt(
fullpath))]
return Qs
def get_queries_type(expr,run,method_name):
"""Getting type of queries generated by
a specific method of a run of AL experiment
"""
stypes = []
Qs = get_queries(expr, run, method_name)
Q_types = []
for Q in Qs:
t = get_sample_type(
expr, run, Q)
Q_types += [t]
return Q_types
def get_sample_type(expr, run, inds):
"""Getting type of a given set of
indexed samples in a run of an
experiment
"""
stypes = []
for ind in inds:
line = linecache.getline(
os.path.join(
expr.root_dir,
str(run),
'inds.txt'), ind)
stypes += [int(line.splitlines(
)[0].split(',')[-1])]
return stypes
def get_slice_preds(expr,
run,
model,
inds,
slice_,
sess):
"""Getting the results of
class prediction of a set of indexed
voxels in a given slices of the
image
"""
# take only indices of the
# given slice
if expr.pars['data']=='adults':
img_addrs, mask_addrs = patch_utils.extract_Hakims_data_path()
elif expr.pars['data']=='newborn':
img_addrs, mask_addrs = patch_utils.extract_newborn_data_path()
img_addr = img_addrs[expr.pars[
'indiv_img_ind']]
img,_ = nrrd.read(img_addr)
inds_path = os.path.join(expr.root_dir,
str(run),
'inds.txt')
samples_dict,_ = PW_AL.create_dict(
inds_path, inds)
multinds = np.unravel_index(
samples_dict[img_addr],
img.shape)
slice_indics = multinds[2]==slice_
slice_multinds = (
multinds[0][slice_indics],
multinds[1][slice_indics])
slice_inds = inds[slice_indics]
# prediction
preds = PW_AL.batch_eval_winds(
expr,
run,
model,
slice_inds,
'prediction',
sess)
return preds, slice_multinds
def visualize_eval_metrics(expr,
run,
metric,
methods=[],
colors=[]):
"""Visualize performance evaluations
of a set of methods in an experiment's
run
Size of the color vector `colors` should
be the number of included path plus
one (if there also exists the performance
metric value for the full pool data set)
"""
run_path = expr.root_dir
if len(methods)==0:
methods = [f for f in os.listdir(run_path)
if os.path.isdir(os.path.join(
run_path, f))]
# maximum number of queries among methods
M = 0
for i, method_name in enumerate(methods):
if not(os.path.exists(os.path.join(
expr.root_dir, method_name))):
continue
if metric=='F1':
# vector of evaluation metrics
F = np.loadtxt(os.path.join(
run_path,
method_name,
'perf_evals.txt'))
F[np.isnan(F)] = 0
elif metric=='Precision':
F = get_eval_metrics(
expr, run, method_name)[0,:]
elif metric=='Recall':
F = get_eval_metrics(
expr, run, method_name)[1,:]
# vector of numbre of observed
# labels at each query iterations
Qset = get_queries(expr,
method_name)
Qsizes = [0] + [len(Q) for Q in Qset]
Qsizes = np.cumsum(Qsizes)
# if the last iteration is still not
# evaluated, ignore the queries
if len(Qsizes)==len(F)+1:
Qsizes = Qsizes[:-1]
M = max(M, Qsizes[-1])
# plotting this curve
if method_name=='fi':
method_name='Fisher'
if len(colors)>0:
plt.plot(Qsizes, F,
linewidth=2,
color=colors[i],
marker = '*',
label=method_name)
else:
plt.plot(Qsizes, F,
linewidth=2,
marker='*',
label=method_name)
# get the full performance
if os.path.exists(os.path.join(
run_path,
'pooltrain_eval.txt')):
full_F = np.loadtxt(os.path.join(
run_path,
'pooltrain_eval.txt'))
if len(colors)>0:
plt.plot([0,M],
[full_F, full_F],
linewidth=2,
color=colors[-1],
label='Pool-training')
else:
plt.plot([0,M],
[full_F, full_F],
linewidth=2,
label='Pool-training')
plt.legend(fontsize=15)
plt.xlabel('# Queries', fontsize=15)
plt.ylabel(metric, fontsize=15)
plt.grid()
def get_preds_stats(preds, mask):
"""Computing different statistics of
a set of prediction in comparison with
the ground truth labels, such as P, N,
TP, TN, FP, FN
At this time, this function deals only
with single images (and not a dictionary
of multiple images). That is to say, the
inputs are two arrays of the same size,
and with binary values (0 or 1)
"""
P = float(np.sum(mask>0))
N = float(np.sum(mask==0))
TP = float(np.sum(np.logical_and(
preds>0, mask>0)))
FP = float(np.sum(np.logical_and(
preds>0, mask==0)))
TN = float(np.sum(np.logical_and(
preds==0, mask==0)))
FN = float(np.sum(np.logical_and(
preds==0, mask>0)))
return P, N, TP, FP, TN, FN
def get_Fmeasure(preds, mask):
# computing total TPs, Ps, and
# TPFPs (all positives)
P = 0
TP = 0
TPFP = 0
if isinstance(preds, dict):
for img_path in list(preds.keys()):
ipreds = preds[img_path]
imask = np.array(mask[img_path])
P += np.sum(imask>0)
TP += np.sum(np.logical_and(
ipreds>0, imask>0))
TPFP += np.sum(ipreds>0)
else:
P += np.sum(mask>0)
TP += np.sum(np.logical_and(
preds>0, mask>0))
TPFP += np.sum(preds>0)
# precision and recall
Pr = TP / TPFP
Rc = TP / P
# F measure
return 2/(1/Pr + 1/Rc)
def F1_scores(preds,labels):
P,N,TP,FP,TN,FN = get_preds_stats(preds, labels)
Pr = TP / (TP+FP)
Rc = TP/P
return 2*Pr*Rc / (Pr+Rc)
def get_eval_metrics(expr,
run,
method_name):
"""Computing different evaluation
metrics of the predictions in results
of running a specific querying
method in an experiment's run
"""
run_path = os.path.join(
expr.root_dir, str(run))
# load ground truth labels
labels_path = os.path.join(
run_path, 'labels.txt')
test_lines = np.int64(np.loadtxt(
os.path.join(run_path,
'test_lines.txt')))
test_labels = PW_AL.read_label_lines(
labels_path, test_lines)
# load predictions
preds_path = os.path.join(
run_path,
method_name,
'predicts.txt')
preds = np.loadtxt(preds_path)
iter_cnt = preds.shape[0]
Metrs = np.zeros((2, iter_cnt))
for i in range(iter_cnt):
(P, N, TP,
FP, TN, FN) = get_preds_stats(
preds[i,:], test_labels)
# Precision
Metrs[0,i] = TP / (TP+FP)
# Recall
Metrs[1,i] = TP / P
return Metrs
def mask_SuPix(overseg_img,
SuPix_codes,
show_bound=True):
"""Visualizing some super-pixels in
the over-segmentation image where the
boundaries of all the super-pixels
are shown, and the selected ones
are high-lighted
"""
s = overseg_img.shape
masked_SuPix = np.zeros(
s, dtype=bool)
# get the boundaries if necessary
if show_bound:
for i in range(s[2]):
masked_SuPix[:,:,i
] = find_boundaries(
overseg_img[:,:,i])
# selected superpixels slices
slices = np.unique(SuPix_codes[0,:])
for j in slices:
props = regionprops(
overseg_img[:,:,j])
SuPix_labels = SuPix_codes[
1, SuPix_codes[0,:]==j]
n_overseg = len(props)
prop_labels = [props[i]['label']
for i in
range(n_overseg)]
# mask the super-pixels
for label in SuPix_labels:
label_loc = np.where(
prop_labels==label)[0][0]
# indices of the pixels in
# this super-pixel
multinds_2D = props[
label_loc]['coords']
vol = len(multinds_2D[:,0])
multinds_3D = (
multinds_2D[:,0],
multinds_2D[:,1],
np.ones(vol,dtype=int)*j)
masked_SuPix[multinds_3D] = True
return masked_SuPix
def full_model_probs(expr,
run,
method_name,
img_path,
slice_inds):
"""Computing the probability maps of slices
of an image that is given through its path
If `method_name` is an empty list, then this
function loads the weights to which the
parameter `expr.pars['init_weights_path]`
is referring.
"""
if len(method_name)>0:
method_path = os.path.join(
expr.root_dir, str(run),
method_name)
weights_path = os.path.join(
method_path, 'curr_weights.h5')
else:
weights_path = expr.pars[
'init_weights_path']
# make the model ready
model = NN.create_model(
expr.pars['model_name'],
expr.pars['dropout_rate'],
expr.nclass,
expr.pars['learning_rate'],
expr.pars['grad_layers'],
expr.pars['train_layers'],
expr.pars['optimizer_name'],
expr.pars['patch_shape'])
# start TF session to do the prediction
with tf.Session() as sess:
print("Loading model with weights %s"%
weights_path)
# loading the weights into the model
model.initialize_graph(sess)
model.load_weights(
weights_path, sess)
# get the predictins
slice_evals = full_slice_eval(
model,
img_path,
slice_inds,
'axial',
expr.pars['patch_shape'],
expr.pars['ntb'],
expr.pars['stats'],
sess,
'posteriors')
return slice_evals
def full_model_pred_DCRF(expr,
model,
sess,
img_path,
mask_path,
slice_inds,
save_dir=None):
"""Generating predictions of a model
that is post-processed by Dense-CRF, over
particular slices of an image
If `method_name` is given, the last model that
is saved for that method will be used (in the
given experiment's run)
If `method_name` is an empty list, then this
function loads the weights to which the
parameter `expr.pars['init_weights_path]`
is referring.
"""
img,_ = nrrd.read(img_path)
mask,_ = nrrd.read(mask_path)
DCRF_preds = np.zeros(img.shape)
if save_dir:
if not(os.path.exists(save_dir)):
os.mkdir(save_dir)
for i, ind in enumerate(slice_inds):
# get the posteriors
slice_posts = full_slice_eval(
model,
img_path,
[ind],
'axial',
expr.pars['patch_shape'],
expr.pars['ntb'],
expr.pars['stats'],
sess,
'posteriors')
slice_dcrf = DCRF_postprocess_2D(
slice_posts[0],
img[:,:,ind])
DCRF_preds[:,:,ind] = slice_dcrf
#print('%d / %d'%
# (i, len(slice_inds)-1))
if False:
# save the results, showing
# predictions on mask boundaries
mask_bound = find_boundaries(
mask[:,:,ind])
rgb_result = patch_utils.\
generate_rgb_mask(
img[:,:,ind],
slice_dcrf,
mask_bound)
fig = plt.figure(figsize=(7,7))
plt.imshow(rgb_result, cmap='gray')
plt.axis('off')
plt.savefig(os.path.join(
save_dir,'%d.png'%
(slice_inds[i])),
bbox_inches='tight')
plt.close(fig)
# computing F-measure
P,N,TP,FP,TN,FN = get_preds_stats(
DCRF_preds[:,:,slice_inds],
mask[:,:,slice_inds])
Pr = TP/(TP+FP)
Rc = TP/P
F1 = 2./(1/Pr+1/Rc)
if save_dir:
nrrd.write(os.path.join(
save_dir, 'dcrf_segs.nrrd'),
DCRF_preds)
np.savetxt(os.path.join(
save_dir, 'F1_score_dcrf.txt'),
[F1])
return DCRF_preds, F1
def DCRF_postprocess_2D(post_map,
img_slice):
"""Dense-CRF applying on a 2D
binary posterior map
"""
d = dcrf.DenseCRF2D(img_slice.shape[0],
img_slice.shape[1],
2)
# unary potentials
post_map[post_map==0] += 1e-10
post_map = -np.log(post_map)
U = np.float32(np.array([1-post_map,
post_map]))
U = U.reshape((2,-1))
d.setUnaryEnergy(U)
# pairwise potentials
# ------------------
# smoothness kernel (considering only
# the spatial features)
feats = create_pairwise_gaussian(
sdims=(1, 1),
shape=img_slice.shape)
d.addPairwiseEnergy(
feats, compat=20,
kernel=dcrf.DIAG_KERNEL,
normalization=dcrf.NORMALIZE_SYMMETRIC)
# appearance kernel (considering spatial
# and intensity features)
feats = create_pairwise_bilateral(
sdims=(5, 5),
schan=(1),
img=img_slice,
chdim=-1)
d.addPairwiseEnergy(
feats, compat=30,
kernel=dcrf.DIAG_KERNEL,
normalization=dcrf.NORMALIZE_SYMMETRIC)
# D-CRF's inference
niter = 5
Q = d.inference(niter)
# maximum probability as the label
MAP = np.argmax(Q, axis=0).reshape(
(img_slice.shape[0],
img_slice.shape[1]))
return MAP
def full_model_eval(expr,
model,
sess,
img_path,
mask_path,
slice_inds,
save_dir=None):
"""Evaluating the last model of a querying
method in an experiment's run
"""
if save_dir:
if not(os.path.exists(save_dir)):
os.mkdir(save_dir)
mask,_ = nrrd.read(mask_path)
img,_ = nrrd.read(img_path)
# slice-by-slice prediction
preds = np.zeros(mask.shape)
for i, ind in enumerate(slice_inds):
# get the predictins
slice_evals = full_slice_eval(
model,
img_path,
[ind],
'axial',
expr.pars['patch_shape'],
expr.pars['ntb'],
expr.pars['stats'],
sess)
preds[:,:,ind] = slice_evals[0]
print('%d / %d'% (i, len(slice_inds)),
end=',')
# save the results, with showing both
# model evaluations and mask boundaries
if False:
mask_bound = find_boundaries(
mask[:,:,ind])
rgb_result = patch_utils.generate_rgb_mask(
img[:,:,ind],
slice_evals[0],
mask_bound)
fig = plt.figure(figsize=(7,7))
plt.imshow(rgb_result, cmap='gray')
plt.axis('off')
plt.savefig(os.path.join(
save_dir,'%d.png'% (ind)),
bbox_inches='tight')
plt.close(fig)
# computing F-measure
P,N,TP,FP,TN,FN = get_preds_stats(
preds[:,:,slice_inds],
mask[:,:,slice_inds])
Pr = TP/(TP+FP)
Rc = TP/P
F1 = 2./(1/Pr+1/Rc)
print('\n F1: %.4f'% F1)
# save the results if necessary
# this save_path will be created inside the
# method's directory
if save_dir:
# save the results itself
nrrd.write(os.path.join(
save_dir, 'segs.nrrd'),
np.uint8(preds))
np.savetxt(os.path.join(
save_dir, 'F1_socre.txt'),
[F1])
return preds, F1
def full_slice_eval(model,
sess,
img_paths,
slice_inds,
patch_shape,
ntb,
stats,
varname='prediction'):
"""Generating prediction of all voxels
in a few slices of a given image
"""
img,_ = nrrd.read(img_paths[0])
img_shape = img.shape
slice_nvox = np.prod(img_shape[:2])
inds_2D = np.arange(0, slice_nvox)
# single to multiple 2D indices
# (common for all slices)
multinds_2D = np.unravel_index(
inds_2D, img_shape[:2])
slice_evals = np.zeros(img_shape)
for ind in slice_inds:
extra_inds = np.ones(
len(inds_2D),
dtype=int)*ind
multinds_3D = multinds_2D +\
(extra_inds,)
# multi 3D to single 3D indices
inds_3D = np.ravel_multi_index(
multinds_3D, img_shape)
# get the prediction for this slice
evals = PW_NN.batch_eval(model,
sess,
img_paths,
inds_3D,
patch_shape,
ntb,
stats,
varname)[0]
# prediction map
eval_map = np.zeros(img_shape[:2])
eval_map[multinds_2D] = evals
slice_evals[:,:,ind] = eval_map
#print('%d / %d'%
# (i,len(slice_inds)))
return slice_evals
def full_test_slice_DCRF(newborn_exp_names):
# load the first experiment just to create
# the CNN model
E = PW_AL.Experiment(newborn_exp_names[0])
E.load_parameters()
model = NN.create_model(
E.pars['model_name'],
E.pars['dropout_rate'],
E.nclass,
E.pars['learning_rate'],
E.pars['grad_layers'],
E.pars['train_layers'],
E.pars['optimizer_name'],
E.pars['patch_shape'])
base_dir = '/common/collections/dHCP/dHCP_DCI_spatiotemporal_atlas/Processed'
with tf.Session() as sess:
model.initialize_graph(sess)
for root_dir in newborn_exp_names:
print('Experiment %s..'% root_dir)
E = PW_AL.Experiment(root_dir)
E.load_parameters()
weights_path = os.path.join(
E.root_dir,
'0/random/curr_weights.h5')
model.load_weights(weights_path, sess)
save_dir = os.path.join(
E.root_dir, '0/random/full_preds')
if not(os.path.exists(save_dir)):
os.mkdir(save_dir)
_,img_path,mask_path = PW_AL.get_expr_data_info(
E, base_dir)
img,_ = nrrd.read(img_path)
slice_inds = np.arange(1,img.shape[2],2)
_,_ = full_model_pred_DCRF(
E,model,sess,
img_path, mask_path,
slice_inds, save_dir)
def grid_based_F1(model, sess,
img_paths, mask_path,
patch_shape,
ntb,
stats):
"""Computing F1 score based on (all) grid
samples of some images
"""
# generating grid samples
spacing = 10
inds, labels,_ = patch_utils.generate_grid_samples(
img_paths[0], mask_path, 10, 0)
# predictions
preds = PW_NN.batch_eval(model, sess,
img_paths, inds,
patch_shape,
ntb, stats,
'prediction')[0]
# F1 score
P,N,TP,FP,TN,FN = get_preds_stats(
preds, np.array(labels))
Pr = TP / (TP+FP)
Rc = TP/P
return 2./(1/Pr + 1/Rc)
def eval_MultimgAL(expr,method_name,
img_paths,
start_ind=0,
save_dir=[]):
m = len(expr.train_paths[0])-1
patch_shape = expr.pars['patch_shape'][:2] + \
(m*expr.pars['patch_shape'][2],)
model = NN.create_model(
expr.pars['model_name'],
expr.pars['dropout_rate'],
expr.nclass,
expr.pars['learning_rate'],
expr.pars['grad_layers'],
expr.pars['train_layers'],
expr.pars['optimizer_name'],
patch_shape)
model.add_assign_ops()
method_path = os.path.join(expr.root_dir,
method_name)
Qs = get_queries(expr, method_name)
qnum = len(Qs)
imgnum = len(img_paths)
save_dir = os.path.join(method_path,
'test_scores.txt')
if start_ind>0:
scores = np.loadtxt(save_dir)
else:
scores = np.zeros((imgnum, qnum))
with tf.Session() as sess:
model.initialize_graph(sess)
sess.graph.finalize()
for i in range(start_ind,qnum):
weights_path = os.path.join(method_path,
'curr_weights_%d.h5'% (i+1))
print('Loading weights %s'% weights_path)
model.perform_assign_ops(weights_path, sess)
for j in range(imgnum):
# grid-samples from the j-th image
expr.test_paths = img_paths[j:j+1]
stats_arr = np.zeros((1,2*m))
mask,_ = nrrd.read(expr.test_paths[0][-1])
for t in range(m):
img,_ = nrrd.read(expr.test_paths[0][t])
stats_arr[0,2*t:2*(t+1)] = np.array(
[np.mean(img[~np.isnan(mask)]),
np.std(img[~np.isnan(mask)])])
expr.test_stats = stats_arr
scores[j,i],test_preds = expr.test_eval(model, sess)
np.savetxt(save_dir, scores)
print(j, end=',')
print()
def get_interp_slice_posts(x, y, vals, slice_shape):
slice_vals = np.zeros(slice_shape)
# interpolator
f = scipy.interpolate.interp2d(x, y, vals)
# evaluate interpolator on the mesh
xgrid = np.arange(slice_shape[0])
ygrid = np.arange(slice_shape[1])
yy,xx = np.meshgrid(ygrid,xgrid)
xx = np.ravel(xx)
yy = np.ravel(yy)
for i in range(len(xx)):
slice_vals[xx[i], yy[i]] = f(xx[i], yy[i])
return slice_vals
def get_Qsims(model,sess, expr, method_name):
Qs = get_queries(expr, method_name)
imgs = []
for path in expr.pars['img_paths']:
img,_ = nrrd.read(path)
imgs += [img]
# get similarities
sims = []
d3 = expr.pars['patch_shape'][2]
stats = expr.pars['stats']
for i in range(len(Qs)):
patches = patch_utils.get_patches(
imgs, Qs[i],
expr.pars['patch_shape'], False)
for j in range(len(imgs)):
patches[:,:,:,j*d3:(j+1)*d3] = (patches[
:,:,:,j*d3:(j+1)*d3]-stats[j][0])/\
stats[j][1]
# flattened version of the output of
# the last convolutional layer as features
F = sess.run(model.probes[0],
feed_dict={model.x:patches,
model.keep_prob:1.})
# cosine similarities
inners = np.dot(F.T,F)
norms = np.sqrt(np.sum(F**2, axis=0))
cos_sims = inners / np.outer(norms,norms)
sims += [cos_sims]
return sims