-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathextract.py
454 lines (414 loc) · 27.1 KB
/
extract.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
#!/usr/bin/env python
"""
"""
import os
import argparse
import json
import h5py
import time
import numpy as np
import torch
from torch.autograd import Variable
import torchvision
import torchvision.transforms as transforms
from utils import get_freer_gpu
from preprocess import resize_frame, preprocess_frame, ToTensorWithoutScaling, ToFloatTensorInZeroOne
from sample_frames import sample_frames, sample_frames2
from feature_extractors.cnn import CNN
from feature_extractors.c3d import C3D
from feature_extractors.i3dpt import I3D
from feature_extractors.eco import init_model as ECO
from feature_extractors.tsm import init_model as TSM
from configuration_file import ConfigurationFile
__author__ = "jssprz"
__version__ = "0.0.1"
__maintainer__ = "jssprz"
__email__ = "jperezmartin90@gmail.com"
__status__ = "Development"
def l2norm(X):
"""L2-normalize columns of X
"""
norm = torch.pow(X, 2).sum(dim=1, keepdim=True).sqrt()
X = torch.div(X, norm)
return X
def parse_shift_option_from_log_name(log_name):
if 'shift' in log_name:
strings = log_name.split('_')
for i, s in enumerate(strings):
if 'shift' in s:
break
return True, int(strings[i].replace('shift', '')), strings[i + 1]
else:
return False, None, None
def extract_features(file_name, extractor_name, extractor, dataset_name, device, config, feature_size, transformer):
"""
:type c3d_extractor:
:param device:
:param config:
:param frame_shape:
:param dataset_name:
:param cnn_extractor:
:param c3d_extractor:
:param params:
:return:
"""
if not os.path.exists(config.features_dir):
os.makedirs(config.features_dir)
if config.datainfo_path and os.path.exists(config.datainfo_path):
with open(config.datainfo_path) as f:
datainfo = json.load(f)
# Read the video list and let the videos sort by id in ascending order
if dataset_name == 'MSVD':
videos = [os.path.join(config.data_dir, v) for v in sorted(os.listdir(config.data_dir))]
map_file = open(config.mapping_path, 'w')
elif dataset_name == 'MSR-VTT':
videos = [os.path.join(config.data_dir, v) for v in sorted(os.listdir(config.data_dir), key=lambda x: int(x[5:-4]))]
elif dataset_name == 'M-VAD':
videos = [os.path.join(config.data_dir, v) for v in sorted(os.listdir(config.data_dir), key=lambda x: int(x[5:-4]))]
elif dataset_name == 'TRECVID-2020':
videos = [os.path.join(config.data_dir, v) for v in sorted(os.listdir(config.data_dir), key=lambda x: int(x[6:x.index('.')]))]
elif dataset_name == 'TRECVID-2020-Test':
videos = [os.path.join(config.data_dir, v) for v in sorted(os.listdir(config.data_dir), key=lambda x: int(x[:x.index('.')]))]
elif dataset_name == 'TGIF':
videos = [os.path.join(config.data_dir, v) for v in sorted(os.listdir(config.data_dir), key=lambda x: int(x[:-4]))]
elif dataset_name == 'VATEX':
with open(os.path.join(config.data_dir, 'list.txt')) as f:
videos = []
for line in f.readlines():
path = os.path.join(config.data_dir, line.strip()[1:])
ss = int(line.rsplit('.',1)[0].split('_')[-2])
to = int(line.rsplit('.',1)[0].split('_')[-1])
videos.append((path, (ss, to)))
elif dataset_name == 'ActivityNet':
videos = [os.path.join(config.data_dir, v) for v in sorted(os.listdir(config.data_dir)) if v.rsplit('.', 1)[0] in datainfo]
map_file = open(config.mapping_path, 'w')
elif dataset_name == 'ActivityNet-Test':
with open(config.test_vid_list_json) as f:
test_vids = json.load(f)
videos = [os.path.join(config.data_dir, v) for v in sorted(os.listdir(config.data_dir)) if v.rsplit('.', 1)[0] in test_vids]
map_file = open(config.mapping_path, 'w')
elif dataset_name == 'ActivityNet-Fragments':
videos = []
for v in sorted(os.listdir(config.data_dir)):
v_path = os.path.join(config.data_dir, v)
vid = v.rsplit('.', 1)[0]
if vid in datainfo:
for i, ts in enumerate(datainfo[vid]['timestamps']):
videos.append((v_path, ts, i))
map_file = open(config.mapping_path, 'w')
elif os.path.exists(os.path.join(config.data_dir, 'list.txt')):
with open(os.path.join(config.data_dir, 'list.txt')) as f:
videos = [os.path.join(config.data_dir, path.strip()) for path in f.readlines()]
# Create an hdf5 file that saves video features
feature_h5_path = os.path.join(config.features_dir, file_name)
if os.path.exists(feature_h5_path):
# If the hdf5 file already exists, it has been processed before,
# perhaps it has not been completely processed.
# Read using r+ (read and write) mode to avoid overwriting previously saved data
h5 = h5py.File(feature_h5_path, 'r+')
else:
h5 = h5py.File(feature_h5_path, 'w')
if dataset_name in list(h5.keys()):
dataset = h5[dataset_name]
if extractor_name in list(dataset.keys()):
dataset_model = dataset[extractor_name]
elif extractor_name.split('_')[-1] == 'features':
dataset_model = dataset.create_dataset(extractor_name, (len(videos), config.max_frames, feature_size), dtype='float32')
elif extractor_name.split('_')[-1] == 'globals':
dataset_model = dataset.create_dataset(extractor_name, (len(videos), 1, feature_size), dtype='float32')
elif extractor_name.split('_')[-1] == 'mask':
dataset_model = dataset.create_dataset(extractor_name, (len(videos), config.max_frames), dtype='float32')
dataset_f_ts = dataset['frames_tstamp']
dataset_counts = dataset['count_features']
else:
dataset = h5.create_group(dataset_name)
if extractor_name.split('_')[-1] == 'features':
dataset_model = dataset.create_dataset(extractor_name, (len(videos), config.max_frames, feature_size), dtype='float32')
elif extractor_name.split('_')[-1] == 'globals':
dataset_model = dataset.create_dataset(extractor_name, (len(videos), 1, feature_size), dtype='float32')
elif extractor_name.split('_')[-1] == 'mask':
dataset_model = dataset.create_dataset(extractor_name, (len(videos), config.max_frames), dtype='float32')
dataset_f_ts = dataset.create_dataset('frames_tstamp', (len(videos), config.max_frames), dtype='float32')
dataset_counts = dataset.create_dataset('count_features', (len(videos),), dtype='int')
if extractor is not None:
extractor.to(device)
extractor.eval()
i, forget_idxs = 0, []
for video_path in videos:
fragment, all_fragments = None, None
if dataset_name == 'ActivityNet':
vid = video_path.split('/')[-1].rsplit('.', 1)[0]
if vid in datainfo:
all_fragments = datainfo[vid]['timestamps']
elif dataset_name == 'ActivityNet-Fragments':
video_path, fragment, fragment_idx = video_path
elif dataset_name == 'VATEX':
video_path, fragment = video_path
# Extract video frames and video tiles
sample_type = 'fixed' if extractor_name == 'eco_globals' else 'dynamic'
max_frames = 16 if extractor_name == 'eco_globals' else config.max_frames
frame_list, frame_ts_list, clip_list, frame_count, fragments_mask = sample_frames(sample_type, video_path, max_frames,
config.frame_sample_rate,
config.clip_size,
segment_secs=fragment,
all_fragments=all_fragments)
# sampled_frames, frame_count = sample_frames2(video_path, num_segments=16, segment_length=1)
if frame_count == 0:
print('The ', i,' video: ', video_path, ' was discarded because it does not have correct frames.')
forget_idxs.append(i)
if dataset_name in ['TRECVID-2020', 'VATEX', 'TGIF']:
i+=1
continue
if frame_count < config.clip_size:
print('The ', i,' video: ', video_path, ' was discarded because it has less than ', config.clip_size, ' correct frames.')
forget_idxs.append(i)
if dataset_name in ['TRECVID-2020', 'VATEX', 'TGIF']:
i+=1
continue
if dataset_name == 'MSVD':
map_name_id = '{}\tvideo{}\n'.format(video_path.split('/')[-1].rsplit('.', 1)[0], i)
map_file.write(map_name_id)
elif dataset_name == 'ActivityNet':
vid = video_path.split('/')[-1].rsplit('.', 1)[0]
if vid in datainfo:
all_fragments = datainfo[vid]['timestamps']
map_name_id = '{} \t {}\n'.format(vid, i)
map_file.write(map_name_id)
elif dataset_name == 'ActivityNet-Test':
vid = video_path.split('/')[-1].rsplit('.', 1)[0]
map_name_id = '{} \t {}\n'.format(vid, i)
map_file.write(map_name_id)
elif dataset_name == 'ActivityNet-Fragments':
map_name_timestamp_idx = '{} \t {} \t {} \t {} \t {}\n'.format(video_path.split('/')[-1].rsplit('.', 1)[0], fragment[0], fragment[1], fragment_idx, i)
map_file.write(map_name_timestamp_idx)
if i % 50 == 0:
if fragment is None:
print('%d\t%s\t%d' % (i, video_path.split('/')[-1], frame_count))
else:
print('%d\t%s\t[%f,%f]\t%d' % (i, video_path.split('/')[-1], fragment[0], fragment[1], frame_count))
if extractor_name == 'events_mask':
assert fragments_mask is not None, 'to compute the mask you must pass the list of fragments to the sample_frames method'
features = torch.zeros(1, config.max_frames)
features[0,:len(fragments_mask)] = torch.tensor(fragments_mask)
elif extractor_name == 'cnn_features':
# Preprocess frames and then convert it into (batch, channel, height, width) format
# frame_list = np.array([preprocess_frame(x, scale_size=scale_size, crop_size=crop_size,
# mean=input_mean, std=input_std, normalize_input=True)
# for x in frame_list])
# frame_list = torch.from_numpy(frame_list.transpose((0, 3, 1, 2))).to(device)
# frame_list = torch.cat([preprocess_frame(x, scale_size=scale_size, crop_size=crop_size,
# mean=input_mean, std=input_std, normalize_input=True).unsqueeze(0)
# for x in frame_list], dim=0).to(device)
frame_list = torch.cat([transformer(x).unsqueeze(0) for x in frame_list], dim=0).to(device)
# Extracting cnn features of sampled frames first
features = extractor(frame_list)
print(extractor_name, i, features.size(), features.mean())
elif extractor_name in ['cnn_globals', 'cnn_sem_globals']:
frame_list = torch.cat([transformer(x).unsqueeze(0) for x in frame_list], dim=0).to(device)
features = extractor(frame_list.transpose(0,1).unsqueeze(0))
print(frame_list.size(), features.size(), features.min(), features.max(), features.mean())
elif extractor_name in ['c3d_features', 'i3d_features']:
# Preprocess frames of the video fragments to extract motion features
# clip_list = np.array([[preprocess_frame(x, scale_size=extractor.scale_size, crop_size=extractor.crop_size,
# mean=extractor.input_mean, std=extractor.input_std) for x in clip] for clip in clip_list])
# clip_list = clip_list.transpose((0, 4, 1, 2, 3)).astype(np.float32)
# clip_list = torch.from_numpy(clip_list).to(device)
b, n, features = 70, len(clip_list), []
for c in clip_list:
assert config.clip_size == len(c), '{}!={}'.format(config.clip_size, len(c))
for j in range(0, n, b):
clips_batch = [torch.cat([transformer(x).unsqueeze(0) for x in c], dim=0).unsqueeze(0) for c in clip_list[j:min(j+b, n)]]
clips_batch = torch.cat(clips_batch, dim=0).transpose(1,2).to(device)
# Extracting c3d features
features.append(extractor(clips_batch))
features = torch.cat(features, dim=0)
print(features.size(), features.mean())
elif extractor_name in ['c3d_globals', 'i3d_globals']:
# Preprocess frames of the video fragments to extract motion features
frames = np.array([preprocess_frame(x, scale_size=scale_size, crop_size=crop_size,
mean=input_mean, std=input_std) for x in frame_list])
frames = torch.from_numpy(frames.transpose((0, 3, 1, 2)).astype(np.float32)).unsqueeze(2).to(device)
# Extracting i3d features of sampled frames first
features = extractor(frames)[1]
print(features.size(), features.mean())
elif extractor_name in ['eco_features', 'tsm_features', 'eco_sem_features', 'tsm_sem_features']:
features = []
for clip in clip_list:
clip_frames = torch.cat([torch.from_numpy(preprocess_frame(x, scale_size=scale_size, crop_size=crop_size,
mean=input_mean, std=input_std))
for x in clip], dim=2).transpose(0,2).unsqueeze(0).to(device)
# Extracting eco features from current clip
features.append(extractor(clip_frames))
features = torch.cat(features, dim=0)
if extractor_name in ['eco_sem_features', 'tsm_sem_features']:
probs = torch.softmax(features, dim=1)
print(probs.size(), probs.max(), probs.min())
elif extractor_name in ['eco_globals', 'tsm_globals', 'eco_sem_globals', 'tsm_sem_globals']:
frames = torch.cat([torch.from_numpy(preprocess_frame(x, crop_size=224, scale_size=256, mean=[104, 117, 128], std=[1]))
for x in frame_list], dim=2).transpose(0,2).unsqueeze(0)
# Extracting eco-semantic features from sampled frames
features = extractor(frames.to(device)).squeeze(0)
print(features.size(), features.min(), features.max(), features.mean())
if extractor_name in ['eco_sem_globals', 'tsm_sem_globals']:
probs = torch.softmax(features, dim=1)
print(probs.size(), probs.max(), probs.min())
if extractor_name.split('_')[-1] == 'features':
dataset_model[i] = np.zeros((config.max_frames, feature_size), dtype='float32')
dataset_model[i, :features.size(0), :] = features.data.cpu().numpy()
dataset_counts[i] = features.size(0)
dataset_f_ts[i] = np.zeros((config.max_frames), dtype='float32')
dataset_f_ts[i, :features.size(0)] = frame_ts_list
else:
dataset_model[i] = features.data.cpu().numpy()
i+=1
h5.close()
print('discarded idxs: ', forget_idxs)
if dataset_name in ['MSVD','ActivityNet', 'ActivityNet-Test','ActivityNet-Fragments']:
map_file.close()
def main(args, config):
if torch.cuda.is_available():
gpu_id = get_freer_gpu()[0]
device = torch.device('cuda:{}'.format(gpu_id))
torch.cuda.set_device('cuda:{}'.format(gpu_id))
print(f'Torch current device: cuda:{torch.cuda.current_device()}')
print(f'Running on freer device: cuda:{gpu_id}')
else:
device = torch.device('cpu')
print('Running on cpu device')
file_name = '{}_features_linspace{}_{}-{}.h5'.format(config.dataset_name.lower(), config.frame_sample_rate, config.max_frames, '-'.join(args.features))
for feats_name in args.features:
if feats_name == 'events_mask':
extract_features(file_name, feats_name, None, args.dataset_name, device, config, None, None)
if feats_name == 'cnn_features':
print('Extracting CNN for {} dataset'.format(args.dataset_name))
cnn_use_torch_weights = (config.cnn_pretrained_path == '')
model = CNN(config.cnn_model, input_size=224, use_pretrained=cnn_use_torch_weights, use_my_resnet=False)
if not cnn_use_torch_weights:
model.load_pretrained(config.cnn_pretrained_path)
transformer = transforms.Compose([transforms.Scale(model.scale_size),
transforms.CenterCrop(model.crop_size),
transforms.ToTensor(),
transforms.Normalize(mean=model.input_mean, std=model.input_std)])
with torch.no_grad():
extract_features(file_name, feats_name, model, args.dataset_name, device, config, model.feature_size, transformer)
if feats_name in ['cnn_globals', 'cnn_sem_globals']:
print('Extracting ResNet (2+1)D for {} dataset'.format(args.dataset_name))
model = CNN('r2plus1d_18', input_size=112, use_pretrained=True, use_my_resnet=False, get_probs=feats_name=='cnn_sem_globals')
transformer = transforms.Compose([transforms.Resize((128, 171)),
transforms.CenterCrop((112, 112)),
transforms.ToTensor(),
transforms.Normalize(mean=[0.43216, 0.394666, 0.37645],
std=[0.22803, 0.22145, 0.216989]),
])
with torch.no_grad():
extract_features(file_name, feats_name, model, args.dataset_name, device, config, model.feature_size, transformer)
if feats_name in ['c3d_features', 'c3d_globals']:
print('Extracting C3D for {} dataset'.format(args.dataset_name))
model = C3D()
model.load_pretrained(config.c3d_pretrained_path)
transformer = transforms.Compose([transforms.Scale((200, 112)),
transforms.CenterCrop(112),
ToTensorWithoutScaling(),
transforms.Normalize(mean=model.input_mean, std=model.input_std)])
with torch.no_grad():
extract_features(file_name, feats_name, model, args.dataset_name, device, config, model.feature_size, transformer)
if feats_name in ['c3d_globals', 'i3d_globals']:
print('Extracting I3D for {} dataset'.format(args.dataset_name))
model = I3D(modality='rgb')
model.load_state_dict(torch.load(config.i3d_pretrained_path))
with torch.no_grad():
extract_features(file_name, feats_name, model, args.dataset_name, device, config, feature_size=model.feature_size,
crop_size=model.crop_size, scale_size=model.scale_size, input_mean=model.input_mean,
input_std=model.input_std)
if feats_name in ['eco_features', 'eco_globals']:
print('Extracting ECOfull for {} dataset'.format(args.dataset_name))
model, crop_size, scale_size, input_mean, input_std = ECO(num_class=400, num_segments=16,
pretrained_parts='finetune', #'2D', '3D',
modality='RGB',
arch='ECOfull', # 'ECOfull' 'ECO' 'C3DRes18'
consensus_type='identity', #'avg',
dropout=0,
no_partialbn=True, #False,
resume_chpt='',
get_global_pool=True,
gpus=[device])
transformer = transforms.Compose([transforms.Scale((scale_size, scale_size)),
transforms.CenterCrop(crop_size),
ToTensorWithoutScaling(),
transforms.Normalize(mean=input_mean, std=input_std)])
with torch.no_grad():
extract_features(file_name, feats_name, model, args.dataset_name, device, config, 1536, transformer)
if feats_name in ['eco_sem_features', 'eco_sem_globals']:
print('Extracting ECO-Smantic for {} dataset'.format(args.dataset_name))
model, crop_size, scale_size, input_mean, input_std = ECO(num_class=400, num_segments=config.frame_sample_rate,
pretrained_parts='finetune', #'2D', '3D',
modality='RGB',
arch='ECOfull', # 'ECOfull' 'ECO' 'C3DRes18'
consensus_type='identity', #'avg',
dropout=.8,
no_partialbn=True, #False,
resume_chpt='',
get_global_pool=False,
gpus=[device])
with torch.no_grad():
extract_features(file_name, 'eco_sem_features', model, args.dataset_name, device, config, 400, crop_size, scale_size,
input_mean, input_std)
if feats_name in ['tsm_features', 'tsm_globals']:
print('Extracting {} for {} dataset'.format(feats_name, args.dataset_name))
model, crop_size, scale_size, input_mean, input_std = TSM(num_class=174, num_segments=config.frame_sample_rate,
modality='RGB',
arch='resnet50', # 'resnet101'
consensus_type='avg', # 'avg' 'identity'
dropout=0,
img_feature_dim=256,
no_partialbn=True, #False,
pretrain='imagenet',
is_shift=True,
shift_div=8,
shift_place='blockers',
non_local=False,
temporal_pool=False,
resume_chkpt='./models/Smth-Smth-v2-tsm/TSM_somethingv2_RGB_resnet50_shift8_blockres_avg_segment16_e45.pth',
get_global_pool=True,
gpus=[device])
if feats_name in ['tsm_sem_features', 'tsm_sem_globals']:
print('Extracting {} for {} dataset'.format(feats_name, args.dataset_name))
model, crop_size, scale_size, input_mean, input_std = TSM(num_class=174, num_segments=config.frame_sample_rate,
modality='RGB',
arch='resnet50', # 'resnet101'
consensus_type='avg', # 'avg' 'identity'
dropout=.8,
img_feature_dim=256,
no_partialbn=True, #False,
pretrain='imagenet',
is_shift=True,
shift_div=8,
shift_place='blockers',
non_local=False,
temporal_pool=False,
resume_chkpt='./models/Smth-Smth-v2-tsm/TSM_somethingv2_RGB_resnet50_shift8_blockres_avg_segment16_e45.pth',
get_global_pool=False,
gpus=[device])
with torch.no_grad():
extract_features(file_name, feats_name, model, args.dataset_name, device, config, 174, crop_size, scale_size, input_mean, input_std)
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Train a captioning model for a specific dataset.')
parser.add_argument('-ds', '--dataset_name', type=str, default='MSVD',
help='Set The name of the dataset (default is MSVD).')
parser.add_argument('-f','--features', nargs='+',
help='<Required> Set the names of features to be extracted', required=True)
parser.add_argument('-config', '--config_file', type=str, required=True,
help='<Required> Set the path to the config file with other configuration params')
args = parser.parse_args()
assert args.dataset_name in ['MSVD', 'M-VAD', 'MSR-VTT', 'TRECVID-2020', 'TRECVID-2020-Test', 'TGIF', 'VATEX', 'ActivityNet', 'ActivityNet-Test', 'ActivityNet-Fragments']
for f_name in args.features:
assert f_name in ['events_mask', 'cnn_features', 'cnn_globals', 'cnn_sem_globals', 'c3d_features', 'c3d_globals', 'i3d_features', 'i3d_globals', 'eco_features', 'eco_globals', 'eco_sem_features', 'eco_sem_globals', 'tsm_sem_features', 'tsm_sem_globals', 'tsm_features', 'tsm_globals']
config = ConfigurationFile(args.config_file, args.dataset_name)
# while True:
# try:
main(args, config)
print('Extraction of all features finished!!')
# break
# except OSError:
# time.sleep(10)
# print('\ntrying again...')