forked from khroushan/Floquet_Lattice
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathFloquet_2D.py
142 lines (116 loc) · 3.99 KB
/
Floquet_2D.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
# file Floquet_2D package
# contains functions needed for floquet lattice calculation.
# Author: Amin Ahmadi
# Date: 30 Jan, 2018
import numpy as np
############################################################
def make_sq(mlat, dAB, *J):
"""Constructs the Hamiltonian and the connection
matrix of a bipartite square lattice.
0--o 0--o
| | | |
o--0 o--0
| | | |
0--o 0--o
One period of the driven fieldconsists of 5 time
interval which are defined through hoping amplitude Ji
\in [1,2,..,5], where in the last interval all hopping
amplitude are off.
input:
------
mlat: integer, width of slab, number of site in
one super unitcell would br 2xm
J: is a tuple of float. Provide the hopping amplitude
for different time intrval
returns:
--------
h: 2mlatx2mlat complex matrix, Hamiltonian of the slab
tau: 2mlatx2mlat complex matrix, the connection matrix
between two neighbor super unit cell
"""
if (len(J)!=4):
print("Number of paramaters are exceeded 5!")
NN = 2*mlat
tau = np.zeros((NN,NN), dtype=complex)
h = np.zeros((NN,NN), dtype=complex)
for i in range(mlat-1):
if (i%2==0):
h[i,i] = dAB/2. # on-site energy
h[mlat+i,mlat+i] = -dAB/2. # on-site energy
h[i, mlat+i] = J[0]
h[i, i+1] = J[1]
h[mlat+i, mlat+i+1] = J[3]
#
tau[mlat+i, i] = J[2]
elif (i%2==1):
h[i,i] = -dAB/2. # on-site energy
h[mlat+i,mlat+i] = dAB/2. # on-site energy
h[i, mlat+i] = J[2]
h[i, i+1] = J[3]
h[mlat+i, mlat+i+1] = J[1]
#
tau[mlat+i, i] = J[0]
# End of loop over lattice sites
# The upper edge site
if (mlat-1 % 2==0):
h[mlat-1, mlat-1] = dAB/2. # on-site energy
h[NN-1,NN-1] = -dAB/2. # on-site energy
h[mlat-1, NN-1] = J[0]
#
tau[NN-1, mlat-1] = J[2]
elif (mlat-1 % 2==1):
h[mlat-1, mlat-1] = -dAB/2. # on-site energy
h[NN-1,NN-1] = dAB/2. # on-site energy
h[mlat-1, NN-1] = J[2]
#
tau[NN-1, mlat-1] = J[0]
h = h + h.conj().T # make it hermitian
return h, tau
############################################################
def make_Gr(mlat, *J):
""" Constructs the Hamiltonian and the connection
matrix of an armchair graphene strip.
0--o 0--o
| | | |
o 0--o 0
| | | |
0--o 0--o
| | | |
o 0--o 0
| | | |
0--o 0--o
One period of the driven fieldconsists of 3 time
interval which are defined through hoping amplitude Ji
\in [1,2,3].
input:
------
mlat: integer, width of slab, number of site in
one super unitcell would br 2xm
returns:
--------
h: 2mlatx2mlat complex matrix, Hamiltonian of the slab
tau: 2mlatx2mlat complex matrix, the connection matrix
between two neighbor super unit cell
"""
if (len(J)!=3):
print("Number of paramaters are not right, must be 5!")
NN = 2*mlat # # of sites in one super unitcell
tau = -np.zeros((NN, NN),dtype=complex)
h = np.zeros((NN,NN), dtype=complex)
# translational cell's Hamiltonian
for i in range(mlat-1):
if (i%2==0):
h[i,i+1] = J[0]
h[mlat+i,mlat+i+1] = J[1]
h[i,mlat+i] = J[2] # horizoltal connection
elif (i%2==1):
h[i,i+1] = J[1]
h[mlat+i,mlat+i+1] = J[0]
# longitudinal connection of the last sites
if (mlat-1)%2 == 0:
h[mlat-1,2*mlat-1] = J[2]
h = h + h.conj().T # make it hermitian
# Hopping matrix
for i in range(1,mlat,2):
tau[i+mlat,i] = J[2]
return h, tau