forked from wjiang94/miSAEM_logReg
-
Notifications
You must be signed in to change notification settings - Fork 1
/
samu_analysis.Rmd
342 lines (311 loc) · 15.2 KB
/
samu_analysis.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
---
title: "Analysis of Traumabase dataset "
author: "Wei Jiang"
date: "6/25/2018"
output: html_notebook
---
This file contains the code for the exploration of Traumabase dataset, application of SAEM on Traumabase to explain the risk of hemorragic shock of severely traumatised patients.
```{r}
library(ggplot2)
library(tidyr)
library(knitr)
library(MASS)
library(mvtnorm)
library(mice)
library(ROCR)
library(misaem)
library(naniar)
library(missMDA)
library(FactoMineR)
```
Here we first :
1. load the datasets;
2. select the prehospital variables;
3. correct false calculation of BMI;
Patients were excluded if
1. they had suffered from penetrating trauma (where an object such as a weapon or burns have pierced the skin and entered body tissue, creating an open wound)
2. they had been in pre-hospital traumatic cardiac arrest, or when no pre-hospital data was available.
```{r}
traumdata <- read.csv(file="trauma.csv",sep=';',dec=',',header = TRUE,na.strings = c("","NR","IMP","NA","NF"),encoding = "UTF-8")
SAMU <- traumdata[ ,c(10:14,225:228,234,33:35,15,18,229:233,244,19:30,41:42,49:54,48,58,61,44,46:47,55:57,60,62, 38)]
SAMU$BMI[3302]=SAMU$Poids[3302]/(SAMU$Taille[3302]^2)
SAMU=SAMU[-which(SAMU$ACR.1==1),]
Choc.hemorragique= traumdata$Choc.hemorragique
Choc.hemorragique = Choc.hemorragique[-which(traumdata$ACR.1==1)]
Choc.hemorragique = Choc.hemorragique[-which(SAMU$Mecanisme=="Arme blanche" | SAMU$Mecanisme=="Arme à feu")]
SAMU=SAMU[-which(SAMU$Mecanisme=="Arme blanche" | SAMU$Mecanisme=="Arme à feu"),]
SAMU_CONT = SAMU[,c(1,3:5,34:41,43:44,48:50)]
indx <- sapply(SAMU_CONT, is.factor)
SAMU_CONT[indx] <- lapply(SAMU_CONT[indx], function(x) as.numeric(as.character(x)))
SAMU_CONT$SD.min=SAMU_CONT$PAS.min-SAMU_CONT$PAD.min
SAMU_CONT$SD.SMUR=SAMU_CONT$PAS.SMUR-SAMU_CONT$PAD.SMUR
SAMU_NEW = SAMU_CONT[,-c(7:8,10:11,15)]
```
Plot the percentage of missingness
```{r}
gg_miss_var(SAMU_NEW,show_pct = TRUE)+ ylab('% Missing')
```
PCA
```{r}
res.comp = imputePCA(SAMU_NEW) #iterative PCA
imp = cbind.data.frame(as.factor(Choc.hemorragique),res.comp$completeObs)
#perform the PCA on the completed data set using the PCA function of the FactoMineR package
res.pca = PCA(imp,quali.sup = 1,graph = FALSE)
plot(res.pca,choix='ind',hab=1, lab ='quali',cex=0.5)
```
```{r}
plot(res.pca,choix='var',cex=0.5)
```
To perform our algorithm and evaluate its predictive perfermance, thus comparing to other existing methods, we consider the classical cross-validation procedures. We split the whole dataset into training and test sets, then estimate the parameters and select the variables on the training set, finally predict the response on the test set.
First we defines all the functions to use in SAEM and others methods.
Functions for SAEM:
* data_split: split the dataset into training and test sets
* model_selection_samu: perform model selection (BIC forward) with SAEM for Traumabase data
* prediction_saem_samu: predict the risk of hemorragic shock in test sets (with missing data)
* combinations: function to use in model selection, return all the possible combination of variables
```{r}
data_split = function(SAMU_NEW,seed_val){
set.seed(seed_val)
sample <- sample.int(n = nrow(SAMU_NEW), size = floor(.2*nrow(SAMU_NEW)), replace = F)
SAMU.train <- SAMU_NEW[-sample, ]
SAMU.test <-SAMU_NEW[sample, ]
Choc.hemorragique.train=Choc.hemorragique[-sample]
Choc.hemorragique.test=Choc.hemorragique[sample]
if(sum(rowSums(is.na(SAMU.test))==dim(SAMU.test)[2])!=0){
Choc.hemorragique.test = Choc.hemorragique.test[-which(rowSums(is.na(SAMU.test))==dim(SAMU.test)[2])]
SAMU.test = SAMU.test[-which(rowSums(is.na(SAMU.test))==dim(SAMU.test)[2]),]
}
return(list(SAMU.train=SAMU.train,SAMU.test=SAMU.test,Choc.hemorragique.train=Choc.hemorragique.train,Choc.hemorragique.test=Choc.hemorragique.test))
}
model_selection_saem = function(SAMU.train,Choc.hemorragique.train,ifshow=FALSE){
N=dim(SAMU.train)[1]
p=dim(SAMU.train)[2]
subsets=combinations(p)
ll = matrix(-Inf,nrow=p,ncol=p)
subsets1 = subsets[rowSums(subsets)==1,]
for (j in 1:(nrow(subsets1))){
pos_var=which(subsets1[j,]==1)
list.saem.subset=miss.saem(data.matrix(SAMU.train),Choc.hemorragique.train,pos_var,maxruns=500,tol_em=1e-7,nmcmc=2,print_iter=FALSE,ll_obs_cal=TRUE)
ll[1,j] = list.saem.subset$ll
}
id = BIC = rep(0,p)
subsetsi=subsets1
SUBSETS = matrix(-Inf,nrow=p,ncol=p)
for(i in 2:p){
nb.x = i-1
nb.para = (nb.x + 1) + p + p*p
id[i-1] = d = which.max(ll[i-1,])
pos_var=which(subsetsi[d,]==1)
BIC[i-1] = -2*ll[i-1,d]+ nb.para * log(N)
SUBSETS[i-1,]=subsetsi[d,]
if(i==2){subsetsi = subsets[(rowSums(subsets)==i) & (subsets[,pos_var]==i-1),]}
if(i>2){subsetsi = subsets[(rowSums(subsets)==i) & (rowSums(subsets[,pos_var])==i-1),]}
if(i<p){
for (j in 1:(nrow(subsetsi))){
pos_var=which(subsetsi[j,]==1)
list.saem.subset=miss.saem(data.matrix(SAMU.train),Choc.hemorragique.train,pos_var,maxruns=1000,tol_em=1e-7,nmcmc=2,print_iter=FALSE,ll_obs_cal=TRUE)
ll[i,j] = list.saem.subset$ll
}
}
}
list.saem.subset=miss.saem(data.matrix(SAMU.train),Choc.hemorragique.train,1:p,maxruns=1000,tol_em=1e-7,nmcmc=2,print_iter=FALSE,ll_obs_cal=TRUE)
ll[p,1] = list.saem.subset$ll
nb.x = p
nb.para = (nb.x + 1) + p + p*p
BIC[p] = -2*ll[p,1]+ nb.para * log(N)
if(ifshow==TRUE){plot(BIC);lines(BIC)}
subset_choose = which(SUBSETS[which.min(BIC),]==1)
list.saem.subset=miss.saem(data.matrix(SAMU.train),Choc.hemorragique.train,subset_choose,maxruns=1000,tol_em=1e-7,k1=2,nmcmc=2,print_iter=TRUE)
beta.saem.train = list.saem.subset$beta
se.saem.train = list.saem.subset$std_obs
mu.saem = list.saem.subset$mu
sig2.saem = list.saem.subset$sig2
return(list(beta=beta.saem.train,se=se.saem.train,mu=mu.saem,sig2=sig2.saem,subset=subset_choose))
}
prediction_saem=function(SAMU.test,Choc.hemorragique.test,beta.saem.train,mu.saem,sig2.saem,ifshow=FALSE){
rindic = as.matrix(is.na(SAMU.test))
for(i in 1:dim(SAMU.test)[1]){
if(sum(rindic[i,])!=0){
miss_col = which(rindic[i,]==TRUE)
x2 = SAMU.test[i,-miss_col]
mu1 = mu.saem[miss_col]
mu2 = mu.saem[-miss_col]
sigma11 = sig2.saem[miss_col,miss_col]
sigma12 = sig2.saem[miss_col,-miss_col]
sigma22 = sig2.saem[-miss_col,-miss_col]
sigma21 = sig2.saem[-miss_col,miss_col]
mu_cond = mu1+sigma12 %*% solve(sigma22)%*%(x2-mu2)
SAMU.test[i,miss_col] =mu_cond
}
}
tmp <- as.matrix(cbind.data.frame(rep(1,dim(SAMU.test)[1]),SAMU.test)) %*% as.matrix(beta.saem.train)
pr.saem <- 1/(1+(1/exp(tmp)))
pre <- prediction(pr.saem, Choc.hemorragique.test)
auc.saem <- performance(pre, measure = "auc")@y.values[[1]]
cost.perf = performance(pre, "cost", cost.fp = 1, cost.fn = 10)
thsd = pre@cutoffs[[1]][which.min(cost.perf@y.values[[1]])]
pred.saem = (pr.saem > thsd)*1
tb.saem = table(Choc.hemorragique.test,pred.saem)
if(ifshow==TRUE){
print(tb.saem)
prf <- performance(pre, measure = "tpr", x.measure = "fpr")
plot(prf, colorize = FALSE,main = "ROC on validation set - SAEM ")
abline(a=0, b= 1, col="grey80")
}
acc.saem =(tb.saem[1,1]+tb.saem[2,2])/sum(tb.saem)
preci.saem = tb.saem[2,2]/(tb.saem[1,2]+tb.saem[2,2])
sensi.saem =tb.saem[2,2]/(tb.saem[2,1] +tb.saem[2,2])
spe.saem =tb.saem[1,1]/(tb.saem[1,1] +tb.saem[1,2])
return(list(auc = auc.saem,acc=acc.saem,preci=preci.saem,sensi=sensi.saem,spe=spe.saem))
}
combinations = function(n){
comb = NULL
for( i in 1:n) comb = rbind(cbind(1,comb),cbind(0,comb))
return(comb)
}
```
Functions for mice:
```{r}
prediction_mice = function(SAMU.train,Choc.hemorragique.train,SAMU.test,Choc.hemorragique.test){
# estimation and model selection
DATA.ch= cbind.data.frame(Choc.hemorragique.train,SAMU.train)
N=dim(SAMU.train)[1]
p=dim(SAMU.train)[2]
imp.ch <- mice(DATA.ch,seed=100,m=20,print=FALSE,method='rf')
SAMU.mean = complete(imp.ch,action=1)
for(i in 2:20){SAMU.mean = SAMU.mean + complete(imp.ch,action=i)}
SAMU.mean = SAMU.mean[,2:dim(SAMU.mean)[2]]/20
expr <- expression(
fit.ch0 <- glm(Choc.hemorragique.train~1,family = binomial),
f2 <- step(fit.ch0, scope=list(upper=~Age+Poids+Taille+BMI+Glasgow.initial+Glasgow.moteur.initial+
FC.max+FC.SMUR+Hemocue.init+SpO2.min+
Remplissage.total.cristalloides+ Remplissage.total.colloides+SD.min+SD.SMUR, lower=~1),direction="forward",k=log(N),trace=FALSE))
fit <- with(imp.ch, expr)
formulas <- lapply(fit$an, formula)
terms <- lapply(formulas, terms)
vars <- unlist(lapply(terms, labels))
pos_var=as.vector(which(table(vars)>=17))
beta.mice.train=summary(pool(fit.without))[,1]
se.mice.train=summary(pool(fit.without))[,2]
#prediction
for(i in 1:ncol(SAMU.test)){SAMU.test[is.na(SAMU.test[,i]), i]<- mean(SAMU.mean[,i], na.rm = TRUE)}
SAMU.test = data.matrix(cbind.data.frame(rep(1,dim(SAMU.test)[1]),SAMU.test)[,pos_var])
tmp <- SAMU.test4%*% as.matrix(beta.mice.train)
pr <- 1/(1+(1/exp(tmp)))
pr.mice <- 1/(1+(1/exp(tmp)))
pre <- prediction(pr.mice, Choc.hemorragique.test)
auc.mice <- performance(pre, measure = "auc")@y.values[[1]]
cost.perf = performance(pre, "cost", cost.fp = 1, cost.fn = 10)
seuil = pre@cutoffs[[1]][which.min(cost.perf@y.values[[1]])]
pred.mice = (pr.mice>seuil)*1
tb.mice=table(Choc.hemorragique.test,pred.mice)
acc.mice =(tb.mice[1,1]+tb.mice[2,2])/sum(tb.mice)
preci.mice = tb.mice[2,2]/(tb.mice[1,2]+tb.mice[2,2])
sensi.mice =tb.mice[2,2]/(tb.mice[2,1] +tb.mice[2,2])
spe.mice =tb.mice[1,1]/(tb.mice[1,1] +tb.mice[1,2])
return(list(auc=auc.mice,acc=acc.mice,preci=preci.mice,sensi=sensi.mice,spe=spe.mice))
}
```
Functions for imputation by PCA
```{r}
prediction_imppca = function(SAMU.train,Choc.hemorragique.train,SAMU.test,Choc.hemorragique.test){
# estimation and model selection
res.comp = imputePCA(SAMU.train) #iterative PCA
imp = cbind.data.frame(Choc.hemorragique.train,res.comp$completeObs)
regfull = glm(Choc.hemorragique.train~., data=imp,family = binomial)
reg0 = glm(Choc.hemorragique.train~1, data=imp,family = binomial)
msBIC = step(reg0,scope=list(lower=formula(reg0),upper=formula(regfull)), direction="forward",k=log(N))
beta.imppca = summary(msBIC)$coef[,1]
se.imppca = summary(msBIC)$coef[,2]
# prediction
for(i in 1:ncol(SAMU.test3)){
SAMU.test[is.na(SAMU.test[,i]), i]<- mean(res.comp$completeObs[,i], na.rm = TRUE)
}
tmp <- predict(msBIC, newdata=as.data.frame(SAMU.test))
pr.imppca <- 1/(1+(1/exp(tmp)))
pre <- prediction(pr.imppca, Choc.hemorragique.test)
auc.imppca <- performance(pre, measure = "auc")@y.values[[1]]
cost.perf = performance(pre, "cost", cost.fp = 1, cost.fn = 10)#false positives are twice as costly as false negatives
seuil = pre@cutoffs[[1]][which.min(cost.perf@y.values[[1]])]
pred.imppca = (pr.imppca >seuil)*1
tb.imppca=table(Choc.hemorragique.test,pred.imppca)
acc.imppca =(tb.imppca[1,1]+tb.imppca[2,2])/sum(tb.imppca)
preci.imppca = tb.imppca[2,2]/(tb.imppca[1,2]+tb.imppca[2,2])
sensi.imppca =tb.imppca[2,2]/(tb.imppca[2,1] +tb.imppca[2,2])
spe.imppca =tb.imppca[1,1]/(tb.imppca[1,1] +tb.imppca[1,2])
return(list(auc=auc.imppca,auc=acc.imppca,preci=preci.imppca,sensi=sensi.imppca,spe=spe.imppca))
}
```
Functions for mean imputation
```{r}
prediction_mean = function(SAMU.train,Choc.hemorragique.train,SAMU.test,Choc.hemorragique.test){
for(i in 1:ncol(SAMU.train)){
SAMU.train[is.na(SAMU.train[,i]), i] <- SAMU.test[is.na(SAMU.test[,i]), i] <- mean(SAMU.train[,i], na.rm = TRUE)}
DATA.mean= cbind.data.frame(Choc.hemorragique.train,SAMU.train)
regfull = glm(Choc.hemorragique.train~., data=DATA.mean,family = binomial)
reg0 = glm(Choc.hemorragique.train~1, data=DATA.mean,family = binomial)
BIC.mean = step(reg0,scope=list(lower=formula(reg0),upper=formula(regfull)), direction="forward",k=log(N),trace=FALSE)
beta.mean = summary(BIC.mean)$coef[,1]
se.mean = summary(BIC.mean)$coef[,2]
tmp <- predict(BIC.mean, newdata=as.data.frame(SAMU.test))
pr.mean <- 1/(1+exp(-tmp))
pre <- prediction(pr.mean, Choc.hemorragique.test)
auc.mean <- performance(pre, measure = "auc")@y.values[[1]]
cost.perf = performance(pre, "cost", cost.fp = 1, cost.fn = 10)
seuil = pre@cutoffs[[1]][which.min(cost.perf@y.values[[1]])]
pred.mean = (pr.mean >seuil)*1
tb.mean=table(Choc.hemorragique.test,pred.mean)
acc.mean =(tb.mean[1,1]+tb.mean[2,2])/sum(tb.mean)
preci.mean = tb.mean[2,2]/(tb.mean[1,2]+tb.mean[2,2])
sensi.mean =tb.mean[2,2]/(tb.mean[2,1] +tb.mean[2,2])
spe.mean =tb.mean[1,1]/(tb.mean[1,1] +tb.mean[1,2])
return(list(auc=auc.mean,acc=acc.mean,preci=preci.mean,sensi=sensi.mean,spe=spe.mean))
}
```
Estimation on training set => prediction on test set by SAEM
```{r}
set.seed(100)
dataset = data_split(SAMU_NEW,100)
SAMU.train = dataset$SAMU.train
SAMU.test = dataset$SAMU.test
Choc.hemorragique.train = dataset$Choc.hemorragique.train
Choc.hemorragique.test = dataset$Choc.hemorragique.test
est.saem = model_selection_saem(SAMU.train,Choc.hemorragique.train,ifshow=TRUE)
res.saem = prediction_saem(data.matrix(SAMU.test),Choc.hemorragique.test,est.saem$beta,est.saem$mu,est.saem$sig2,ifshow=TRUE)
```
With 15 times of data spliting, we perform the estimation and prediction procedure.
```{r}
seed = c(1,10,20,30,40,50,60,70,80,90,110,120,130,140,150)
AUC.SAEM = AUC.MICE = AUC.IMPPCA = AUC.MEAN = ACC.SAEM = ACC.MICE = ACC.IMPPCA = ACC.MEAN = PRECI.SAEM = PRECI.MICE = PRECI.IMPPCA = PRECI.MEAN = SENSI.SAEM = SENSI.MICE= SENSI.IMPPCA = SENSI.MEAN = SPE.SAEM = SPE.MICE = SPE.IMPPCA = SPE.MEAN = rep(0,15)
for(s in 1:15){
seed_val = seed[s]
set.seed(seed_val)
dataset = data_split(SAMU_NEW,seed_val)
SAMU.train = dataset$SAMU.train
SAMU.test = dataset$SAMU.test
Choc.hemorragique.train = dataset$Choc.hemorragique.train
Choc.hemorragique.test = dataset$Choc.hemorragique.test
est.saem = model_selection_saem(SAMU.train,Choc.hemorragique.train)
res.saem = prediction_saem(SAMU.test,Choc.hemorragique.test,est.saem$beta,est.saem$mu,est.saem$sig2)
res.mice = prediction_mice(SAMU.train,Choc.hemorragique.train,SAMU.test,Choc.hemorragique.test)
res.imppca= prediction_imppca(SAMU.train,Choc.hemorragique.train,SAMU.test,Choc.hemorragique.test)
res.mean = prediction_mean(SAMU.train,Choc.hemorragique.train,SAMU.test,Choc.hemorragique.test)
AUC.SAEM[s] = res.saem$auc; AUC.MICE[s] = res.mice$auc; AUC.IMPPCA[s] = res.imppca$auc; AUC.MEAN[s] = res.mean$auc
ACC.SAEM[s] = res.saem$acc; ACC.MICE[s] = res.mice$acc; ACC.IMPPCA[s] = res.imppca$acc; ACC.MEAN[s] = res.mean$acc
PRECI.SAEM[s] = res.saem$preci; PRECI.MICE[s] = res.mice$preci; PRECI.IMPPCA[s] = res.imppca$preci; PRECI.MEAN[s] = res.mean$preci
SENSI.SAEM[s] = res.saem$sensi; SENSI.MICE[s] = res.mice$sensi; SENSI.IMPPCA[s] = res.imppca$sensi; SENSI.MEAN[s] = res.mean$sensi
SPE.SAEM[s] = res.saem$spe; SPE.MICE[s] = res.mice$spe; SPE.IMPPCA[s] = res.imppca$spe; SPE.MEAN[s] = res.mean$spe
}
```
```{r}
print("AUC:")
sapply(list(AUC.SAEM,AUC.IMPPCA,AUC.MEAN,AUC.MICE), median)
print("sensitivity:")
sapply(list(SENSI.SAEM,SENSI.IMPPCA,SENSI.MEAN,SENSI.MICE), median)
print("specificity:")
sapply(list(SPE.SAEM,SPE.IMPPCA,SPE.MEAN,SPE.MICE), median)
print("accurancy:")
sapply(list(ACC.SAEM,ACC.IMPPCA,ACC.MEAN,ACC.MICE), median)
print("precision:")
sapply(list(PRECI.SAEM,PRECI.IMPPCA,PRECI.MEAN,PRECI.MICE), median)
```