-
Notifications
You must be signed in to change notification settings - Fork 26
/
c1.tex
677 lines (498 loc) · 19.5 KB
/
c1.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
\documentclass{beamer}
%\usepackage[table]{xcolor}
\mode<presentation> {
\usetheme{Boadilla}
% \usetheme{Pittsburgh}
%\usefonttheme[2]{sans}
\renewcommand{\familydefault}{cmss}
%\usepackage{lmodern}
%\usepackage[T1]{fontenc}
%\usepackage{palatino}
%\usepackage{cmbright}
\setbeamercovered{transparent}
\useinnertheme{rectangles}
}
%\usepackage{normalem}{ulem}
%\usepackage{colortbl, textcomp}
\setbeamercolor{normal text}{fg=black}
\setbeamercolor{structure}{fg= black}
\definecolor{trial}{cmyk}{1,0,0, 0}
\definecolor{trial2}{cmyk}{0.00,0,1, 0}
\definecolor{darkgreen}{rgb}{0,.4, 0.1}
\usepackage{array}
\beamertemplatesolidbackgroundcolor{white} \setbeamercolor{alerted
text}{fg=red}
\setbeamertemplate{caption}[numbered]\newcounter{mylastframe}
%\usepackage{color}
\usepackage{tikz}
\usetikzlibrary{arrows}
\usepackage{colortbl}
%\usepackage[usenames, dvipsnames]{color}
%\setbeamertemplate{caption}[numbered]\newcounter{mylastframe}c
%\newcolumntype{Y}{\columncolor[cmyk]{0, 0, 1, 0}\raggedright}
%\newcolumntype{C}{\columncolor[cmyk]{1, 0, 0, 0}\raggedright}
%\newcolumntype{G}{\columncolor[rgb]{0, 1, 0}\raggedright}
%\newcolumntype{R}{\columncolor[rgb]{1, 0, 0}\raggedright}
%\begin{beamerboxesrounded}[upper=uppercol,lower=lowercol,shadow=true]{Block}
%$A = B$.
%\end{beamerboxesrounded}}
\renewcommand{\familydefault}{cmss}
%\usepackage[all]{xy}
\usepackage{tikz}
\usepackage{lipsum}
\newenvironment{changemargin}[3]{%
\begin{list}{}{%
\setlength{\topsep}{0pt}%
\setlength{\leftmargin}{#1}%
\setlength{\rightmargin}{#2}%
\setlength{\topmargin}{#3}%
\setlength{\listparindent}{\parindent}%
\setlength{\itemindent}{\parindent}%
\setlength{\parsep}{\parskip}%
}%
\item[]}{\end{list}}
\usetikzlibrary{arrows}
%\usepackage{palatino}
%\usepackage{eulervm}
\usecolortheme{lily}
\newtheorem{com}{Comment}
\newtheorem{lem} {Lemma}
\newtheorem{prop}{Proposition}
\newtheorem{thm}{Theorem}
\newtheorem{defn}{Definition}
\newtheorem{cor}{Corollary}
\newtheorem{obs}{Observation}
\numberwithin{equation}{section}
\title[Causal Inference] % (optional, nur bei langen Titeln nötig)
{Causal Inference}
\author{Justin Grimmer}
\institute[University of Chicago]{Associate Professor\\Department of Political Science \\ University of Chicago}
\vspace{0.3in}
\date{March 26th, 2018}
\begin{document}
\begin{frame}
\titlepage
\end{frame}
\begin{frame}
\frametitle{Who Take This Class and Why They Take It}
Who: \pause
\begin{itemize}
\invisible<1>{\item[1)] You have taken the prior two classes in the sequence (covering Math, Probability, and Linear Regression) \emph{or their equivalent courses}} \pause
\invisible<1-2>{\item[2)] Familiar with the {\tt R} programming language} \pause
\end{itemize}
\invisible<1-3>{Why: } \pause
\begin{itemize}
\invisible<1-4>{\item[1)] Learn about methods for causal inference: \alert{the effect of some intervention on some outcomes}} \pause
\invisible<1-5>{\item[2)] Topics: experiments, matching, regression, sensitivity analysis, difference-in-differences, panel methods, instrumental variable estimation, and regression discontinuity designs (and if time, machine learning + causal inference)} \pause
\invisible<1-6>{\item[3)] Applications from across the social sciences, with a focus on public policy questions in the social sciences.} \pause
\end{itemize}
\invisible<1-7>{Goal:\\
\alert{Provide you with adequate methodological skills to conduct cutting-edge empirical research}}
\end{frame}
\begin{frame}{Causal Inference}
\begin{itemize}
\itemsep1pt\parskip0pt\parsep0pt
\item
Statistics can be used for many purposes:\bigskip
\begin{itemize}
\itemsep1pt\parskip0pt\parsep0pt
\item
Discovery\pause \bigskip
\item
Measurement \pause \bigskip
\item
Causal inference
\begin{itemize}
\itemsep1pt\parskip0pt\parsep0pt
\item
Relatively new subfield within statistics\medskip
\item
Highly interdisciplinary, rapidly expanding
\end{itemize}
% \item Model based inference
\end{itemize}
\end{itemize}
\end{frame}
\begin{frame}
\centering
\fbox{Causal Inference is a Hard Problem}
\end{frame}
\begin{frame}{Traditional Approaches}
John Stuart Mill's \textbf{Method of Difference}:\medskip
\begin{quote}
If an instance in which the phenomenon under investigation occurs, and
an instance in which it does not occur, have every circumstance in
common save one, that one occurring only in the former; the circumstance
in which alone the two instances differ is the effect, or the cause, or
an indispensable part of the cause, of the phenomenon.
\end{quote}\medskip
% idea to compare like and like are often invoked in CP
% that are alike in every way except one: they differ in the presence or absence of the
% antecedent we conjecture to be the true cause of a.
% For these methods to lead to valid inferences, though, there
% must be only one possible cause of the effect of interest, the
% relationship between cause and effect must be deterministic,
% and there must be no measurement error.
\pause
It would be fantastic if two cases were exactly alike and only differ in one single characteristic, but we rarely have such comparisons in the social sciences
\end{frame}
\begin{frame}{More from Mill}
\small
%thatMill himself railed against the exact use to which his methods have been put.
\begin{quote}
If so little can be done by the method to determine conditions of an effect of many combined causes in the case of the medical sciences, still less is the method applicable to a class of phenomena more complicated than even those of physiology, the phenomena of politics and history. There, Plurality of Causes exists in almost boundless excess, and effects are, for the most part, inextricably interwoven with one another. To add to the embarrassment, most of the inquiries in political science relate to the production of effects of a most comprehensive description, such as the public wealth, the public security, public morality, and the like: results liable to be affected directly or indirectly either in plus or minus by nearly every fact which exists, or event which occurs, in human society. \alert{The vulgar notion that, the safe methods on political subjects are those of Baconian induction [...] will one day be quoted as among the most unequivocal marks of a low state of the speculative faculties in any age in which it is accredited.}
\end{quote}
%\pause
%
%\begin{quote}
%For even if we could try to experiments upon a nation or upon the human race, with little scruple as M. Magendie tried them on dogs and rabbits, we should never succeed on making two instances identical in every respect except the presence of absence of some one definite circumstance.
%\end{quote}
%\begin{quote}
%Nothing can be more ludicrous than the sort of parodies on experimental
%reasoning which one is accustomed to meet with, not in popular
%discussion only, but in grave treatises, when the affairs of nations are
%the theme.
%\end{quote}
%
%\pause
%
%\begin{quote}
%How, it is asked, can an institution be bad, when the country has
%prospered under it? How can such or such causes have contributed to the
%prosperity of one country, when another has prospered without them?
%Whoever makes use of an argument of this kind, not intending to deceive,
%should be sent back to learn the elements of some one of the more
%\textbf{easy} physical sciences.
%\end{quote}
\end{frame}
\begin{frame}
\begin{itemize}
\item[-] Causes of Effects $\leadsto$ Why Did Trump Win? (Headache question (Dawid 2000): Headache is gone, is that because I took asprin?) \pause
\invisible<1>{\item[-] Effects of Causes $\leadsto$ How did a ``China Shock" effect support for Trump? (Dawid 2000: I have a headache, will it help if I take aspirin?)}
\end{itemize}
\end{frame}
\begin{frame}{A Case Study in Failed Causal Inference}
\begin{center}
\includegraphics[width=4in]{images/two_million_regressions.png}
\end{center}
\end{frame}
\begin{frame}{Empirical Growth Literature}
Levine and Ross (1992):
\begin{quote}
There are many econometric specifications in which measures of economic
policy are significantly correlated with long-run per capita growth
rates.
\end{quote}
\pause
\begin{quote}
The cross-country statistical relationships between long-run average
growth rates and almost every particular policy indicator considered by
the profession are fragile: small alterations in the ``other''
explanatory variables overturn past results.
\end{quote}
\end{frame}
\begin{frame}{Is Causal Inference Possible?}
\includegraphics[width=4in]{images/rodrik_learn_nothing.png}
\pause
Why is this a widespread sentiment?
\begin{itemize}
\itemsep1pt\parskip0pt\parsep0pt
\item Important topic
\item
A lot of data
\item
A lot of theory
\item
Many smart people working on this problem
\end{itemize}
\end{frame}
\begin{frame}{Case Study: Post-Menopausal Estrogen}
\begin{itemize}
\itemsep1pt\parskip0pt\parsep0pt
\item
Postmenopausal estrogen plus progestin showed large reduced risk in
coronary heart disease.
\begin{itemize}
\itemsep1pt\parskip0pt\parsep0pt
\item
High quality observational studies using regression and related
techniques on large samples provided the basis for wide scale
prescription of estrogen.
\end{itemize}
\end{itemize}
\pause
Grodstein and Stampfer (1998):
\begin{quote}
``Consistent evidence from over \textbf{40} epidemiologic studies
demonstrates that postmenopausal women who use estrogen therapy after
the menopause have significantly lower rates of heart disease than women
who do not take estrogen\ldots{}the evidence clearly supports a
clinically important protection against heart disease for postmenopausal
women who use estrogen.''
\end{quote}
\end{frame}
\begin{frame}{Case Study: Post-Menopausal Estrogen}
\includegraphics[width=4in]{images/hormone_studies.png}
\scriptsize \medskip
\begin{itemize}
\itemsep1pt\parskip0pt\parsep0pt
\item
Women's Health Initiative (WHI) was a large randomized trial studying
the question\medskip
\item
Experiment showed no benefits from the therapy and increased risk from
Breast Cancer\medskip
\item
Experiment was halted early and prescription of therapy plummeted
immediately thereafter
% \item ``If there are such discrepancies, how many other medical facts do we believe based on one type of
%study or another type of study because we don't have the luxury of having both?''' Dr. Isaac
%Schiff, the chairman of obstetrics and gynecology at Massachusetts General Hospital.
\end{itemize}
\end{frame}
\begin{frame}
\frametitle{Case Study: Voter ID Laws}
\begin{itemize}
\item Voter ID laws: require government issued identification (proof of citizenship) to vote \pause
\invisible<1>{\item \alert{Disproportionately Burdens}: (1) poor, (2) persons of color, and (3) elderly (Ansolabahere and Hersh 2016)} \pause
\invisible<1-2>{\item Causal effect(?): } \pause
\invisible<1-3>{\scalebox{0.35}{\includegraphics{images/LDCaus.png}}} \pause
\invisible<1-4>{\item And yet:} \pause
\invisible<1-5>{``To date, there is little convincing evidence that voter identification laws influence turnout substantially" Highton 2017. } \pause
\invisible<1-6>{\item Or: } \pause
\invisible<1-7>{``When errors are corrected [in Hajnal, Lajevardi, and Nielson 2017], one can recover positive, negative, or null estimates of the effect of voter ID laws on turnout, precluding firm conclusions" Grimmer, Hersh, Meredith, Mummolo, and Nall (2018)}
\end{itemize}
\end{frame}
\begin{frame}
\frametitle{Case Study: Voter ID Laws}
Why? \pause
\begin{itemize}
\invisible<1>{\item[-] Uneven enforcement (``For example, Ansolabehere (2009) reports that white voters are less likely to be asked for
a photo ID than either Latinos or African Americans by about seven percentage points" (see also White et. al 2015))}
\invisible<1-2>{\item[-] Psychological motivation (Valentino and Neuner (2017))} \pause
\invisible<1-3>{\item[-] Compensatory campaign spending} \pause
\invisible<1-4>{\item[-] \alert{Difficulty in assessing effect}}
\end{itemize}
\end{frame}
\begin{frame}{Doesn't Regression Solve the Problem?}
%\includegraphics[width=4in]{images/rodrik_learn_nothing.png}
$$
Y = \alpha + \tau D + \beta_1 X_1 + ... + \beta_k X_k + u
$$
\bigskip
Key problems with regression: \pause \medskip
\begin{itemize}
\invisible<1>{\item Endogeneity and omitted variable bias\medskip} \pause
\invisible<1-2>{\item Misspecified functional form \medskip} \pause
\invisible<1-3>{\item Heterogeneous treatment effects \medskip}
\end{itemize}
\end{frame}
\begin{frame}
\huge
Let's be adults \pause \\
\invisible<1>{Language games don't change that you're estimating a causal effect} \pause \\
\invisible<1-2>{So talk about it like a causal effect}
\end{frame}
\begin{frame}{Causal Identification (Manski 1995)}
\small
\pause
\begin{quote}
\invisible<1>{Studies of \textbf{identification} seek to characterize the conclusions
that could be drawn if one could use the sampling process to obtain an
unlimited number of observations.} \pause
\end{quote}
\begin{quote}
\invisible<1-2>{Studies of \textbf{statistical inference} seek to characterize the
generally weaker conclusions that can be drawn from a finite number of
observations.} \pause
\end{quote}
\pause
\invisible<1-3>{In statistics, something is \textbf{identifiable} if you can get it from
the joint distribution of observable random variables.\\\bigskip
}
\pause
\invisible<1-4>{Informally, \textbf{causal identification} describes the combination of
assumptions, estimation approach, and data necessary to reach a
conclusion about a causal effect:\\
} \pause
\centering
\invisible<1-5>{assumptions + data $\rightarrow$ causal conclusions}
\end{frame}
\frame{
\frametitle{How can we conduct causal inference?}
\begin{figure}[ht] \centering
\scalebox{.4}{\includegraphics{pyramid.pdf}}
\end{figure}
}
\begin{frame}{Causal Inference Workflow}
\centering
\includegraphics[width=.9\linewidth]{images/ciworkflow.pdf}
\end{frame}
\begin{frame}{Roadmap for the Course}
\begin{itemize}
%\itemsep1pt\parskip0pt\parsep0pt
\item
Potential Outcomes Model\smallskip
\item
Random Assignment%: Design and Analysis of Experiments
\begin{itemize}
\itemsep1pt\parskip0pt\parsep0pt
\item Design and Analysis of Experiments\smallskip
\end{itemize}
%\item
% Statistical Inference in Causal Analysis
\item
Selection on Observables
\begin{itemize}
\itemsep1pt\parskip0pt\parsep0pt
\item
Matching, Regression
\item
Sensitivity Analyses\smallskip
\end{itemize}
\item
Selection on Unobservables
\begin{itemize}
\itemsep1pt\parskip0pt\parsep0pt
\item
Longitudinal Research Designs: Difference-in-Differences, Panel Methods, and related methods\smallskip
\end{itemize}
\begin{itemize}
\itemsep1pt\parskip0pt\parsep0pt
\item
Cross-Sectional Designs: Instrumental Variables, Regression Discontinuity Design
\end{itemize}
%\item
% Additional Topics
% \begin{itemize}
% \itemsep1pt\parskip0pt\parsep0pt
% \item
% Attrition
% \item
% External Validity
% \item Model Based Methods:\\
% Binary Outcome Models, Ordered and Multinomial Outcome Models, Event Count Models, Censored and Truncated Outcome Models
% \end{itemize}
\end{itemize}
\end{frame}
\begin{frame}
\frametitle{If there is time...}
Machine Learning + Causal Inference
\begin{itemize}
\item Heterogeneous Treatment Effects, Extrapolation of Effects
\item Text + Causal Inference.
\end{itemize}
\end{frame}
\begin{frame}{Prerequisites}
\begin{itemize}
\item This course assumes a graduate level knowledge of linear regression, probability, and statistical computing in \texttt{R} .\bigskip
\item A willingness to work \alert{hard} on possibly unfamiliar material\bigskip
\item A correlate of whether you have the background:\bigskip
\begin{itemize}
\itemsep1pt\parskip0pt\parsep0pt
\item
$\beta = (X'X)^{-1}X'Y$\bigskip
\item
$Var[X + Y] = Var[X] + Var[X] + Cov[X + Y]$\bigskip
\end{itemize}
\item Computing: \texttt{R}
\end{itemize}
\end{frame}
\begin{frame}{Requirements}
\begin{itemize}
\itemsep1pt\parskip0pt\parsep0pt
\item
Readings (best read before lecture)
\begin{itemize}
\itemsep1pt\parskip0pt\parsep0pt
\item
Read slow, some material should be read multiple times, and do not skip equations.
\item
Read at least one application of every technique.
\end{itemize}\medskip
\item
Homework assignments (35\% of the final grade)
\begin{itemize}
\itemsep1pt\parskip0pt\parsep0pt
\item
Posted on Wednesday, due following Wednesday before class.
\item Can work in groups, but solo attempt first.
\item Provide your own printed write-up and submit code files.
\end{itemize}\medskip
\item Midterm exam (30\% of the final grade). Date is April 30th. \medskip
\item Final exam (30\% of the final grade).\medskip
%\item
% In-class midterm (March 20)
%\item
% Student project
\item
Participation and presentation (5\% of the final grade).
\end{itemize}
\end{frame}
%\begin{frame}{Grades}
%
%\begin{itemize}
%\itemsep1pt\parskip0pt\parsep0pt
%\item
% Weekly homework assignments (65\% of the final grade)
%\item Final exam (30\% of the final grade)
%%\item
%% Student project (25\% of the final grade)
%
%% \begin{itemize}
%% \itemsep1pt\parskip0pt\parsep0pt
%% \item
%% Coauthoring is strongly encouraged.
%% \end{itemize}
%\item
% Participation and presentation (5\% of the final grade)
%\end{itemize}
%
%\end{frame}
\begin{frame}{Housekeeping}
\small
\begin{itemize}
\item Piazza course website will have slides, homework, data sets, and some additional readings: \url{piazza.com/uchicago/spring2018/plsc30600/home} \bigskip
\item You can sign up on the Piazza course page directly from the above address. There are also free Piazza apps for mobile devices. \bigskip
\item The course github is at \url{https://github.com/justingrimmer/CausalInf} . There you'll find all the content that I post here, homeworks, code, etc.
\item \alert{Use OHs and Piazza site to ask questions about the course and homework. Do not email your questions directly to the instructor or TAs.}\bigskip
\item Office hours:
\begin{itemize}
\item Justin: Open Door
\end{itemize}
\end{itemize}
\end{frame}
\begin{frame}{Readings}
\small
\begin{itemize}
\itemsep1pt\parskip0pt\parsep0pt
\item
Books:
\begin{itemize}
\itemsep1pt\parskip0pt\parsep0pt
\item Angrist, Joshua D. and J\"orn-Steffen Pischke. 2009. \emph{Mostly Harmless Econometrics: An Empiricist's Companion}. Princeton University Press. \bigskip
\item Morgan, Stephen L. and Christopher Winship. 2015. \emph{Counterfactuals and Causal Inference: Methods and Principles for Social Research}, \textbf{Second Edition}. Cambridge University Press. \bigskip
% \item Wooldridge, Jeffrey. 2010. {\it Econometric Analysis of Cross Section and Panel Data}, 2nd ed. MIT Press. (A standard reference for applied researchers for most topics covered in the second part of the course.)
% \item Gelman, Andrew and Jennifer Hill. 2007. {\it Data Analysis Using Regression and Multilevel/Hierarchical Models.}
% Cambridge University Press.
\end{itemize}
\item
Assigned articles
\begin{itemize}
\itemsep1pt\parskip0pt\parsep0pt
\item
Most linked from syllabus, a few will be posted on course website
\end{itemize}
\end{itemize}
\end{frame}
\begin{frame}
\frametitle{Scheduling to Keep in Mind}
\begin{itemize}
\item[1)] No class on 5/28
\item[2)] I'll be absent on 4/2 and 4/4. I'll hold make up sessions on 3/30 and 4/6. Time and location TBA
\item[3)] Last day of Class is 5/30
\item[4)] Midterm is 4/30. \alert{you must be here}
\item[5)] Final exam is 6/4 - 6/7. You can take it remotely.
\end{itemize}
\end{frame}
\end{document}