-
Notifications
You must be signed in to change notification settings - Fork 26
/
c2.tex
846 lines (656 loc) · 21.2 KB
/
c2.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
\documentclass{beamer}
%\usepackage[table]{xcolor}
\mode<presentation> {
\usetheme{Boadilla}
% \usetheme{Pittsburgh}
%\usefonttheme[2]{sans}
\renewcommand{\familydefault}{cmss}
%\usepackage{lmodern}
%\usepackage[T1]{fontenc}
%\usepackage{palatino}
%\usepackage{cmbright}
\setbeamercovered{transparent}
\useinnertheme{rectangles}
}
%\usepackage{normalem}{ulem}
%\usepackage{colortbl, textcomp}
\setbeamercolor{normal text}{fg=black}
\setbeamercolor{structure}{fg= black}
\definecolor{trial}{cmyk}{1,0,0, 0}
\definecolor{trial2}{cmyk}{0.00,0,1, 0}
\definecolor{darkgreen}{rgb}{0,.4, 0.1}
\usepackage{array}
\beamertemplatesolidbackgroundcolor{white} \setbeamercolor{alerted
text}{fg=red}
\newtheorem{assumption}{Assumption}
\setbeamertemplate{caption}[numbered]\newcounter{mylastframe}
%\usepackage{color}
\usepackage{tikz}
\usetikzlibrary{arrows}
\usepackage{colortbl}
%\usepackage[usenames, dvipsnames]{color}
%\setbeamertemplate{caption}[numbered]\newcounter{mylastframe}c
%\newcolumntype{Y}{\columncolor[cmyk]{0, 0, 1, 0}\raggedright}
%\newcolumntype{C}{\columncolor[cmyk]{1, 0, 0, 0}\raggedright}
%\newcolumntype{G}{\columncolor[rgb]{0, 1, 0}\raggedright}
%\newcolumntype{R}{\columncolor[rgb]{1, 0, 0}\raggedright}
%\begin{beamerboxesrounded}[upper=uppercol,lower=lowercol,shadow=true]{Block}
%$A = B$.
%\end{beamerboxesrounded}}
\renewcommand{\familydefault}{cmss}
%\usepackage[all]{xy}
\usepackage{tikz}
\usepackage{lipsum}
\newenvironment{changemargin}[3]{%
\begin{list}{}{%
\setlength{\topsep}{0pt}%
\setlength{\leftmargin}{#1}%
\setlength{\rightmargin}{#2}%
\setlength{\topmargin}{#3}%
\setlength{\listparindent}{\parindent}%
\setlength{\itemindent}{\parindent}%
\setlength{\parsep}{\parskip}%
}%
\item[]}{\end{list}}
\usetikzlibrary{arrows}
%\usepackage{palatino}
%\usepackage{eulervm}
\usecolortheme{lily}
\newtheorem{com}{Comment}
\newtheorem{lem} {Lemma}
\newtheorem{prop}{Proposition}
\newtheorem{thm}{Theorem}
\newtheorem{defn}{Definition}
\newtheorem{cor}{Corollary}
\newtheorem{obs}{Observation}
\numberwithin{equation}{section}
\title[Causal Inference] % (optional, nur bei langen Titeln nötig)
{Causal Inference}
\author{Justin Grimmer}
\institute[University of Chicago]{Associate Professor\\Department of Political Science \\ University of Chicago}
\vspace{0.3in}
\date{March 28th, 2018}
\begin{document}
\begin{frame}
\titlepage
\end{frame}
\begin{frame}
\frametitle{Purpose, Scope, and Examples}
Goal in causal inference is to assess the causal effect of some potential cause (e.g. an institution, intervention, policy, or event) on some outcome.\\\bigskip
Examples of such research questions include... \\\medskip
What is the effect of:
\begin{itemize}
\item political institutions on corruption?
\item voting technology on voting fraud?
\item incumbency status on vote shares?
\item peacekeeping missions on peace?
\item mass media on voter preferences?
\item church attendance on turnout?
\end{itemize}
\end{frame}
\begin{frame}
\frametitle{What Do We Mean by Causal Inference?}
As in all statistics, we must begin with a model of the reality we are interested in studying, such as:
\[y_i = \alpha + \tau D_i + X_i\beta + \epsilon_i\] \bigskip
Key problems with regression:\medskip \pause
\pause
\begin{itemize}
\item Endogeneity and omitted variable bias\medskip
\item Misspecified functional form \medskip
\item Heterogenous treatment effects \medskip
\end{itemize}
\end{frame}
\begin{frame}{Neyman-Rubin Potential Outcomes Model}
\begin{figure}
\centering
\begin{minipage}{.5\textwidth}
\centering
\includegraphics[width=.5\linewidth]{images/Neyman_3.jpeg}
\caption{Neyman}
\end{minipage}%
\begin{minipage}{.5\textwidth}
\centering
\includegraphics[width=.5\linewidth]{images/DonRubin.jpg}
\caption{Rubin}
\end{minipage}
\end{figure}
\end{frame}
\begin{frame}{Neyman Urn Model}
\centering
\includegraphics[width=.9\linewidth]{images/potential_outcomes_1.pdf}
\end{frame}
\begin{frame}{Neyman Urn Model}
\centering
\includegraphics[width=.9\linewidth]{images/potential_outcomes_2.pdf}
\end{frame}
\begin{frame}{Causality with Potential Outcomes}
\begin{definition}[Treatment]
$D_i$: Indicator of treatment intake for {\em unit} $i$
\[
D_i = \left\{
\begin{array}{ll}
1 & \mbox{if unit $i$ received the treatment}\\
0 & \mbox{otherwise}.
\end{array}
\right.
\]
\end{definition}
\begin{definition}[Outcome]
$Y_i$: Observed outcome variable of interest for unit $i$. The treatment occurs temporally before the outcome.
\end{definition}
\begin{definition}[Potential Outcomes]
$Y_{0i}$ and $Y_{1i}$: Potential outcomes for unit $i$
\[
Y_{di} = \left\{
\begin{array}{ll}
Y_{1i} & \mbox{Potential outcome for unit $i$ with treatment}\\
Y_{0i} & \mbox{Potential outcome for unit $i$ without treatment}
\end{array}
\right.
\]
\end{definition}
\end{frame}
\begin{frame}{Causality with Potential Outcomes}
\begin{definition}[Causal Effect]
Causal effect of the treatment on the outcome
for unit $i$ is the difference between its two potential outcomes:
\[
\tau_i = Y_{1i} - Y_{0i}
\]
\end{definition}
\begin{assumption}
Observed outcomes are realized as
\[
Y_i = D_i\cdot Y_{1i} + (1-D_i)\cdot Y_{0i}\,\, \mbox{so}\,\,
Y_i = \left\{
\begin{array}{ll}
Y_{1i} & \mbox{if $D_i=1$}\\
Y_{0i} & \mbox{if $D_i=0$}
\end{array}
\right.
\]
\end{assumption}
%\pause
%\begin{definition}[Fundamental Problem of Causal Inference]
%Cannot observe both potential outcomes $(Y_{1i},Y_{0i})$
%\end{definition}
\end{frame}
\begin{frame}{Causal Inference as a Missing Data Problem}
\begin{figure}[ht] \centering
\includegraphics[width = .8 \linewidth]{images/potential_outcome_flowchart.pdf}
\end{figure}
%\emph{Fundamental Problem of Causal Inference}:
\begin{definition}[Fundamental Problem of Causal Inference]
We cannot observe both potential outcomes. So how can we calculate $\tau_i = Y_{1i} - Y_{0i}$?
\end{definition}
\end{frame}
\begin{frame}{Fundamental Problem of Causal Inference}
\scriptsize
Imagine a study population with 4 units:
\begin{table}[ht]
\centering
\begin{tabular}{c c c c c }
$i$ & $D_i$ & $Y_{1i}$ & $Y_{0i}$ & $\tau_i$ \\ \hline
1 & 1 & 10 & 4 & 6 \\
2 & 1 & 1 & 2 & -1 \\
3 & 0 & 3 & 3 & 0 \\
4 & 0 & 5 & 2 & 3 \\
\end{tabular}
\end{table}
What do we observe? \pause
\begin{table}[ht]
\centering
\begin{tabular}{c c c c c c}
$i$ & $D_i$ & $Y_{1i}$ & $Y_{0i}$ & $\tau_i$ & $Y_i$ \\ \hline
1 & 1 & 10 & \alert{?} & \alert{?} & 10 \\
2 & 1 & 1 & \alert{?} & \alert{?} & 1 \\
3 & 0 & \alert{?} & 3 & \alert{?} & 3 \\
4 & 0 & \alert{?} & 2 & \alert{?} & 2 \\
\end{tabular}
\end{table}
Causal inference is difficult because it involves
missing data.
\end{frame}
\begin{frame}{Causal Inference as a Missing Data Problem}
How can we calculate $\tau_i = Y_{1i} - Y_{0i}$?\medskip
\begin{itemize}
\itemsep1pt\parskip0pt\parsep0pt
\item
Homogeneity is one solution:\medskip
\begin{itemize}
\itemsep1pt\parskip0pt\parsep0pt
\item
If $\{Y_{1i}, Y_{0i}\}$ is constant across individuals, then
cross-sectional comparisons will recover $\tau_i$\medskip
\item
If $\{Y_{1i}, Y_{0i}\}$ is constant across time, then before and
after comparisons will recover $\tau_i$\medskip
\end{itemize}
\end{itemize}
\pause
In social phenomena, unfortunately, homogeneity is very rare.
\end{frame}
\begin{frame}{Other Assumptions}
\small
\begin{assumption}
Observed outcomes are realized as
\[
Y_i = D_i\cdot Y_{1i} + (1-D_i)\cdot Y_{0i}
\]
\end{assumption}
\pause
\begin{itemize}
\itemsep1pt\parskip0pt\parsep0pt
\item
Embedded in this formulation is the assumption that potential outcomes
for unit $i$ are unaffected by treatment assignment for unit $j$.
\end{itemize}
\begin{itemize}
\itemsep1pt\parskip0pt\parsep0pt
\item
Assumption known by several names:
\begin{itemize}
\itemsep1pt\parskip0pt\parsep0pt
\item
\textbf{S}table \textbf{U}nit \textbf{T}reatment \textbf{V}alue
\textbf{A}ssumption (SUTVA)
\item
No interference
\item
Individualized Treatment Response
\end{itemize}\medskip
\item
Examples: vaccination, fertilizer on plot yield, communication
\end{itemize}
\end{frame}
\begin{frame}{Potential Outcomes with Interference}
\small
Let $\mathbf{D}=\{D_i,D_j\}$ be the set of vectors of treatment assignments for
two units $i$ (me) and $j$ (you).\\\medskip
How many elements in $\mathbf{D}$?
\pause
\[
\mathbf{D}=\{(D_i=0,D_j=0),(D_i=1,D_j=0),(D_i=0,D_j=1),(D_i=1,D_j=1)\}
\]
\pause
How many potential outcomes for unit $i$?
\pause
\begin{small}
\[
Y_{1i}(\mathbf{D}) = \left\{
\begin{array}{l}
\textcolor{blue}{Y_{1i}(1,1)} \\
\textcolor{cyan}{Y_{1i}(1,0)}
\end{array}
\right.\,\,
Y_{0i}(\mathbf{D}) = \left\{
\begin{array}{l}
\textcolor{red}{Y_{0i}(0,1)} \\
\textcolor{orange}{Y_{0i}(0,0)}
\end{array}
\right.
\]
\end{small}
\end{frame}
\begin{frame}{Potential Outcomes with Interference}
\small
How many causal effects for unit $i$?
\pause
\begin{small}
\[
\tau_i(\mathbf{D}) = \left\{
\begin{array}{l}
\textcolor{blue}{Y_{1i}(1,1)} - \textcolor{orange}{Y_{0i}(0,0)} \\
\textcolor{blue}{ Y_{1i}(1,1)} - \textcolor{red}{Y_{0i}(0,1)} \\
\textcolor{cyan}{Y_{1i}(1,0)} - \textcolor{orange}{Y_{0i}(0,0)} \\
\textcolor{cyan}{ Y_{1i}(1,0)} - \textcolor{red}{Y_{0i}(0,1)} \\
\textcolor{blue}{ Y_{1i}(1,1)} - \textcolor{cyan}{Y_{1i}(1,0)} \\
\textcolor{red}{ Y_{0i}(0,1)} - \textcolor{orange}{Y_{0i}(0,0)} \\
\end{array}
\right.
\]
\end{small}\medskip
\pause
How many potential outcomes are observed for unit $i$?\\\medskip \pause Since we only observe one of the four potential outcomes, the missing data problem for causal inference is even more severe.
\end{frame}
\begin{frame}{Potential Outcomes with Interference}
\small
The No Interference assumption states that unit $i$'s potential outcomes
depend on $D_i$, not $\mathbf{D}$:\medskip
$\textcolor{blue}{Y_{1i}(1,1)}=\textcolor{cyan}{Y_{1i}(1,0)}$ and
$\textcolor{red}{Y_{0i}(0,1)}=\textcolor{orange}{Y_{0i}(0,0)}$\medskip
This assumption furthermore allows us to define the effect for unit $i$
as $\tau_i = Y_{1i} - Y_{0i}$.\medskip
%\pause
%More generally, if $N_T$ units receive treatment, then there are
%${N \choose N_T}$ possible treatment allocations. Thus, each unit will
%have ${N \choose N_T}$ potential outcomes.\medskip
\pause
No interference is an example of an \textbf{exclusion restriction}. We
rely on outside information to rule out the possibility of certain
causal effects (e.g. you taking the treatment has no effect on my
potential outcomes).\medskip
Note that traditional models like regression also involve an implicit SUTVA assumption ($Y_i$ depends on $X_i$)
\end{frame}
\begin{frame}{Potential Outcomes with Interference}
\small
Some Examples of Interference:
\begin{itemize}
\itemsep1pt\parskip0pt\parsep0pt
\item Contagion
\item Displacement
\item Communication
%\item Social comparison
\item Deterrence
%\item Persistence and memory
\end{itemize}
Causal inference in the presence of interference between subjects is an
area of active research. Specially tailored experimental designs have
been developed to study these interactions, e.g.~Miguel and Kremer
(2004) and Sinclair, McConnell, and Green (2012).
\end{frame}
\begin{frame}{Back to the Neyman Urn Model}
\centering
\includegraphics[width=.9\linewidth]{images/potential_outcomes_1.pdf}
\end{frame}
\begin{frame}{Estimands}
\small
Because $\tau_i$ are unobservable, we shift what we are interested in to:
\begin{definition}[Average Treatment Effect (ATE)]
{\centering
$\tau_{ATE} =$ Average of all treatment potential outcomes $-$\\ Average of all control potential outcomes
or
$$\tau_{ATE} = \frac{\sum_i^N Y_{1i}}{N} - \frac{\sum_i^N Y_{0i}}{N} $$
or
$$ \tau_{ATE} = E[Y_{1i} - Y_{0i}]$$
or
$$ \tau_{ATE} = E[\tau_i]$$
}
\end{definition}
\end{frame}
\begin{frame}{Other Estimands}
\small
\begin{definition}[Average treatment effect on the treated (ATT)]
$$ \tau_{ATT} = E[Y_{1i} - Y_{0i} | D_i = 1]$$
\end{definition}
\pause
\begin{definition}[Average treatment effect on the controls (ATC)]
$$ \tau_{ATC} = E[Y_{1i} - Y_{0i} | D_i = 0]$$
\end{definition}
\pause
\begin{definition}[Average treatment effects for subgroups]
{\centering
$$ \tau_{ATE(X)} = E[Y_{1i} - Y_{0i} | X_i = x]$$
or
$$ \tau_{ATT(X)} = E[Y_{1i} - Y_{0i} | D_i = 1, X_i = x]$$
}
\end{definition}
\end{frame}
\begin{frame}{Average Treatment Effect}
Imagine a study population with 4 units:
\begin{table}[ht]
\centering
\begin{tabular}{c c c c c }
$i$ & $D_i$ & $Y_{1i}$ & $Y_{0i}$ & $\tau_i$ \\ \hline
1 & 1 & 10 & 4 & 6 \\
2 & 1 & 1 & 2 & -1 \\
3 & 0 & 3 & 3 & 0 \\
4 & 0 & 5 & 2 & 3 \\
\end{tabular}
\end{table}
What is the ATE?\medskip
\pause
$E[Y_{1i} - Y_{0i}] = 1/4 \times (6 + -1 + 0 + 3) = 2$\medskip
\pause
Note: Average effect is positive, but $\tau_i$ are negative for some
units!
\end{frame}
\begin{frame}{Average Treatment Effect on the Treated}
Imagine a study population with 4 units:
\begin{table}[ht]
\centering
\begin{tabular}{c c c c c }
$i$ & $D_i$ & $Y_{1i}$ & $Y_{0i}$ & $\tau_i$ \\ \hline
1 & 1 & 10 & 4 & 6 \\
2 & 1 & 1 & 2 & -1 \\
3 & 0 & 3 & 3 & 0 \\
4 & 0 & 5 & 2 & 3 \\
\end{tabular}
\end{table}
\medskip
What is the ATT and ATC?\medskip
\pause
$E[Y_{1i} - Y_{0i} | D_i = 1] = 1/2 \times (6 + -1) = 2.5$\\\medskip
$E[Y_{1i} - Y_{0i} | D_i = 0] = 1/2 \times (0 + 3) = 1.5$
\end{frame}
%\begin{frame}{Naive Comparison: Difference in Means}
%\small
%Comparisons between \emph{observed} outcomes of treated and control
%units can often be misleading.
%
%\begin{equation}
%\begin{split}
%E[Y|D=1]-E[Y_i|D_i=0]=E[Y_{1i} | D_i=1]-E[Y_{0i} | D_i=0]\\
% =\underbrace{E[Y_{1i} - Y_{0i} | D_i=1]}_{\mbox{ATT}}
% +\underbrace{\{ E[Y_{i0} | D_i=1]- E[Y_{0i} | D_i=0]\}}_{\mbox{BIAS}}\nonumber
%\end{split}
%\end{equation}
%
%\begin{itemize}
%\itemsep1pt\parskip0pt\parsep0pt
%\item
% Bias term unlikely to be 0 in most applications.
%\item
% Selection into treatment is often associated with the potential
% outcomes
%\end{itemize}
%
%\end{frame}
\begin{frame}{Naive Comparison: Difference in Means}
\small
Comparisons between \emph{observed} outcomes of treated and control
units can often be misleading.
\begin{scriptsize}
\begin{align}
\begin{split}
E[Y_i|D=1]-E[Y_i|D_i=0] \\
&=E[Y_{1i} | D_i=1]-E[Y_{0i} | D_i=0]\\
&=\underbrace{E[Y_{1i} - Y_{0i} | D_i=1]}_{\mbox{ATT}}
+\underbrace{\{ E[Y_{i0} | D_i=1]- E[Y_{0i} | D_i=0]\}}_{\mbox{BIAS}}\nonumber
\end{split}
\end{align}
\end{scriptsize}
\begin{itemize}
\itemsep1pt\parskip0pt\parsep0pt
\item
Bias term unlikely to be 0 in most applications.
\item
Selection into treatment is often associated with the potential
outcomes.
\end{itemize}
\end{frame}
\begin{frame}{Selection Bias}
\small
\begin{scriptsize}
\begin{align}
\begin{split}
E[Y_i|D_i=1]-E[Y_i|D_i=0] \\
&=E[Y_{1i} | D_i=1]-E[Y_{0i} | D_i=0]\\
&=\underbrace{E[Y_{1i} - Y_{0i} | D_i=1]}_{\mbox{ATT}}
+\underbrace{\{ E[Y_{i0} | D_i=1]- E[Y_{0i} | D_i=0]\}}_{\mbox{BIAS}}\nonumber
\end{split}
\end{align}
\end{scriptsize}
Example: Church Attendance and Political Participation
\begin{itemize}
\itemsep1pt\parskip0pt\parsep0pt
\item
Churchgoers are likely to differ from non-churchgoers on a range of
background characteristics (e.g.~civic duty).\medskip
\item
Given these differences, turnout for churchgoers would be higher than
for non-churchgoers even if churchgoers never attended church or
church had zero mobilizing effect
($E[Y_0 | D=1]-E[Y_0 | D=0]>0$).
\end{itemize}
\end{frame}
\begin{frame}{Selection Bias}
\small
\begin{scriptsize}
\begin{align}
\begin{split}
E[Y_i|D_i=1]-E[Y_i|D_i=0] \\
&=E[Y_{1i} | D_i=1]-E[Y_{0i} | D_i=0]\\
&=\underbrace{E[Y_{1i} - Y_{0i} | D_i=1]}_{\mbox{ATT}}
+\underbrace{\{ E[Y_{i0} | D_i=1]- E[Y_{0i} | D_i=0]\}}_{\mbox{BIAS}}\nonumber
\end{split}
\end{align}
\end{scriptsize}
Example: Gender Quotas and Redistribution Towards Women
\begin{itemize}
\itemsep1pt\parskip0pt\parsep0pt
\item
Countries with gender quotas are likely countries where women are
politically mobilized.\medskip
\item
Given this difference, policies targeted towards women are more common in
quota countries even if these countries had not adopted quotas
($E[Y_0 | D=1]-E[Y_0 | D=0]>0$).
\end{itemize}
\end{frame}
\begin{frame}
\frametitle{Regression to Estimate the Average Treatment Effect}
\small
What happens when you run a regression of the observed outcome on the treatment indicator to estimate the ATE?\\\bigskip
The ATE can be expressed as a regression equation:
\begin{eqnarray*}
% \nonumber to remove numbering (before each equation)
Y_i &=& D_i\, Y_{1i} + (1-D_i)\, Y_{0i} \\
&=& Y_{0i} + (Y_{1i}- Y_{0i})\,D_i \\
&=& \underbrace{\bar Y_0}_{\alpha} + \underbrace{(\bar Y_1 - \bar Y_0)}_{\tau_{Reg}} D_i + \underbrace{\{(Y_{i0} - \bar Y_0) + D_i \cdot [(Y_{i1} - \bar Y_1) - (Y_{i0} - \bar Y_0)] \}}_{\epsilon} \\
% &=&\E[Y_0] + (E[Y_1]-\E[Y_0])\,D_i + u_i \\
% &=& \beta + \alpha_{ATE} D_i + u_i
&=& \alpha + \tau_{Reg} D_i + \epsilon_i
\end{eqnarray*}
%where the disturbance term is $u_i\equiv Y_{0i}-\E[Y_0] +[(Y_{1i}-\E[Y_1])-(Y_{0i}-\E[Y_0])]D_i$\\
\begin{itemize}
%\item $D_i$ is random in this interpretation, as opposed to classical regression.
\item $\tau_{Reg}$ could be biased and inconsistent for $\tau_{ATE}$ in two ways: \pause
\begin{itemize}
\item Baseline difference in potential outcomes under control that is correlated with $D_i$.
\item Individual treatment effects $\tau_i$ are correlated with $D_i$
\end{itemize}\pause
\item
Effect heterogeneity implies ``heteroskedasticity'', i.e. error variance differs by values of $D_i$.
\begin{itemize}
\item Neyman model imples ``robust'' standard errors.
\end{itemize}
\end{itemize}
\end{frame}
\begin{frame}{The Assignment Mechanism}
\small
\begin{itemize}
\itemsep1pt\parskip0pt\parsep0pt
\item
Since missing potential outcomes are unobservable we must make
assumptions to fill them in, i.e. \textbf{estimate} missing potential
outcomes.
\item
In the causal inference literature, we typically make assumptions
about the \textbf{assignment mechanism} to do so.
\end{itemize}
\pause
\begin{definition}[Assignment Mechanism]
Assignment mechanism is the procedure that determines which units
are selected for treatment. Examples include:
\begin{itemize}
\item random assignment
\item selection on observables
\item selection on unobservables
\end{itemize}
\end{definition}
\begin{itemize}
\itemsep1pt\parskip0pt\parsep0pt
\item
Most statistical models of causal inference attain identification of
treatment effects by restricting the assignment mechanism in some way.
\end{itemize}
\end{frame}
\begin{frame}{Assignment Mechanism}
Imagine a study population with 4 units:
\begin{table}[ht]
\centering
\begin{tabular}{c c c c c c }
$i$ &$\Pr(D_i = 1)$ & $D_i$ & $Y_{1i}$ & $Y_{0i}$ & $\tau_i$ \\ \hline
1 &\color{red}{?} &1 & 10 & 4 & 6 \\
2 &\color{red}{?} &1 & 1 & 2 & -1 \\
3 &\color{red}{?} &0 & 3 & 3 & 0 \\
4 &\color{red}{?} &0 & 5 & 2 & 3 \\
\end{tabular}
\end{table}
\end{frame}
\begin{frame}
\centering
\fbox{No causation without manipulation?}\bigskip\bigskip\bigskip
\pause
Always ask:\\\bigskip
What is the \alert{ideal experiment} you would run if you had infinite
resources and power?
\end{frame}
\begin{frame}{Causal Inference Workflow}
\centering
\includegraphics[width=.9\linewidth]{images/ciworkflow.pdf}
\end{frame}
\begin{frame}{Summing Up: Neyman-Rubin causal model}
\small
\begin{itemize}
\itemsep1pt\parskip0pt\parsep0pt
\item
Useful for studying the ``effects of causes,'' less so for the
``causes of effects.''\medskip
\item
No assumption of homogeneity, allows for causal effects to vary unit
by unit.\medskip
\begin{itemize}
\itemsep1pt\parskip0pt\parsep0pt
\item
No single ``causal effect,'' thus the need to be precise about the
target estimand.
\end{itemize}\medskip
\item
Distinguishes between \emph{observed} outcomes and \emph{potential}
outcomes.\medskip
\item
Causal inference is a missing data problem: we typically make
assumptions about the assignment mechanism to go from descriptive
inference to causal inference.
\end{itemize}
\end{frame}
\begin{frame}{Alternative Causal Models}
\small
The Neyman-Rubin causal model is popular in the social and health sciences, but
alternatives exist:
\includegraphics[width=.7\linewidth]{images/dag.png}
\begin{itemize}
\itemsep1pt\parskip0pt\parsep0pt
\item
Structural Equation Modeling:
\begin{itemize}
\itemsep1pt\parskip0pt\parsep0pt
\item
Write down causal model using Directed Acyclic Graphs (DAG)
\item
Causal effects are defined by interventions that set variables to
specified values in the causal model.
\item
Set of axioms (``Do Calculus'') that establish identifiablity of
causal parameters given structure of the causal graph.\\
\item
Can be re-expressed in potential outcome notation (though sometimes
difficult!)
\end{itemize}
\item
Causality without Counterfactuals (Dawid 2000)
\end{itemize}
\end{frame}
\end{document}