diff --git a/examples/two-producers/run_sts_two_producers.py b/examples/two-producers/run_sts_two_producers.py index dc777f0..a532525 100644 --- a/examples/two-producers/run_sts_two_producers.py +++ b/examples/two-producers/run_sts_two_producers.py @@ -79,7 +79,6 @@ def main(filepath, outputpath, plots=True, solver='gurobi', mode='forced'): opt.options['mipgap'] = settings.solver.mip_gap opt.options['timelimit'] = settings.solver.time_limit opt.options['logfile'] = os.path.join(outputpath, 'optimization.log') - #opt.options['Seed'] = 56324978 # Solve the optimization problem result = opt.solve(model, tee=True) diff --git a/topotherm/postprocessing.py b/topotherm/postprocessing.py index 5ce934d..4616cf9 100644 --- a/topotherm/postprocessing.py +++ b/topotherm/postprocessing.py @@ -69,11 +69,15 @@ def sts(model: pyo.ConcreteModel, # Get the values from the model p_ij = np.array(pyo.value(model.P['ij', 'in', :, :])) p_ji = np.array(pyo.value(model.P['ji', 'in', :, :])) + p_source_inst = np.array(pyo.value(model.P_source_inst[:])) + p_source = np.array(pyo.value(model.P_source[:, :])) + # flow direction, binary lambda_ij = np.around(np.array(pyo.value(model.lambda_['ij', :])), 0) lambda_ji = np.around(np.array(pyo.value(model.lambda_['ji', :])), 0) q_c_opt = np.zeros([matrices['a_c'].shape[1], len(model.set_t)]) + flh_c_opt = np.zeros([matrices['a_c'].shape[1], len(model.set_t)]) # Exclude non-connected consumers in Q_c, only affects the economic case # Check for consumers connected in direction ij @@ -87,15 +91,29 @@ def sts(model: pyo.ConcreteModel, raise ValueError('Error in the incidence matrix!') # assign the heat demand to the connected consumer if lambda is 1 q_c_opt[a_c_idx[0], :] = lambda_ij[e] * matrices['q_c'][a_c_idx[0], :] + flh_c_opt[a_c_idx[0], :] = lambda_ij[e] * matrices['flh_consumer'][a_c_idx[0], :] elif d == 'ji': a_i_idx = np.where(matrices['a_i'][:, e] == 1) a_c_idx = np.where(matrices['a_c'][a_i_idx[0], :][0] == 1) if len(a_i_idx) != 1 or len(a_c_idx) != 1: raise ValueError('Error in the incidence matrix!') q_c_opt[a_c_idx[0], :] = lambda_ji[e] * matrices['q_c'][a_c_idx[0], :] + flh_c_opt[a_c_idx[0], :] = lambda_ji[e] * matrices['flh_consumer'][a_c_idx[0], :] # Remove nonzero elements row-wise q_c_opt = q_c_opt[q_c_opt.any(axis=1)] + flh_c_opt = np.zeros([matrices['a_c'].shape[1], len(model.set_t)]) + + # Postprocessing producers + if np.shape(matrices['a_p'])[1] == 1: + p_source_inst_opt = p_source_inst + p_source_opt = p_source + flh_s_opt = matrices['flh_source'] + else: + valid_sources = p_source_inst.any(axis=1) + p_source_inst_opt = p_source_inst[valid_sources] + p_source_opt = p_source[valid_sources, :] + flh_s_opt = matrices['flh_source'][valid_sources, :] # Adaption of Incidence Matrix for further postprocessing for q, _ in enumerate(lambda_ij): @@ -107,8 +125,6 @@ def sts(model: pyo.ConcreteModel, # values lambda_ij for ji. This is necessary for the postprocessing. elif lambda_ji[q] == 1: matrices['a_i'][:, q] = matrices['a_i'][:, q] * (-1) - lambda_ij[q] = 1 - lambda_ji[q] = 0 p_lin = p_ij + p_ji # Power of the pipes @@ -123,9 +139,10 @@ def sts(model: pyo.ConcreteModel, a_i_opt = matrices['a_i'][valid_rows, :][:, valid_columns] l_i_opt = matrices['l_i'][valid_columns] - a_i_shape_opt = np.shape(a_i_opt) # (rows 0, columns 1) + a_i_shape_opt = np.shape(a_i_opt) # (rows 0, columns 1) d_lin = np.zeros(a_i_shape_opt[1]) # Initialize linear diameters v_lin = np.zeros(a_i_shape_opt[1]) # Initialize velocities + # Assign supply and return temperatures supply_temp_opt = np.ones(a_i_shape_opt[1]) * settings.temperatures.supply return_temp_opt = np.ones(a_i_shape_opt[1]) * settings.temperatures.return_ @@ -153,12 +170,14 @@ def sts(model: pyo.ConcreteModel, a_c=a_c_opt, q_c=q_c_opt, l_i=l_i_opt, - lambda_ij_opt=lambda_ij, - lambda_ji_opt=lambda_ji, d_i_0=d_lin, m_i_0=m_lin, position=pos_opt, - p=p_lin_opt + p=p_lin_opt, + flh_c_opt=flh_c_opt, + flh_s_opt=flh_s_opt, + p_s_inst_opt=p_source_inst_opt, + p_s_opt=p_source_opt ) return res @@ -183,6 +202,8 @@ def mts(model: pyo.ConcreteModel, p_ij = np.reshape(np.array(pyo.value(model.P['ij', 'in', :, :])), (-1, matrices['q_c'].shape[1])) p_ji = np.reshape(np.array(pyo.value(model.P['ji', 'in', :, :])), (-1, matrices['q_c'].shape[1])) p_cap = np.array(pyo.value(model.P_cap[:])) + p_source_inst = np.array(pyo.value(model.P_source_inst[:])) + p_source = np.array(pyo.value(model.P_source[:, :])) # flow direction, binary lambda_ij = np.reshape(np.around(np.array(pyo.value(model.lambda_['ij', :, :])), 0), (-1, matrices['q_c'].shape[1])) @@ -190,6 +211,7 @@ def mts(model: pyo.ConcreteModel, lambda_b = np.around(np.array(pyo.value(model.lambda_b[:])), 0) q_c_opt = np.zeros([matrices['a_c'].shape[1], len(model.set_t)]) + flh_c_opt = np.zeros([matrices['a_c'].shape[1], len(model.set_t)]) # Exclude non-connected consumers in Q_c, only affects the economic case # Check for consumers connected in direction ij @@ -203,15 +225,29 @@ def mts(model: pyo.ConcreteModel, raise ValueError('Error in the incidence matrix!') # assign the heat demand to the connected consumer if lambda is 1 q_c_opt[a_c_idx[0], :] = lambda_b[e] * matrices['q_c'][a_c_idx[0], :] + flh_c_opt[a_c_idx[0], :] = lambda_b[e] * matrices['flh_consumer'][a_c_idx[0], :] elif d == 'ji': a_i_idx = np.where(matrices['a_i'][:, e] == 1) a_c_idx = np.where(matrices['a_c'][a_i_idx[0], :][0] == 1) if len(a_i_idx) != 1 or len(a_c_idx) != 1: raise ValueError('Error in the incidence matrix!') q_c_opt[a_c_idx[0], :] = lambda_b[e] * matrices['q_c'][a_c_idx[0], :] + flh_c_opt[a_c_idx[0], :] = lambda_b[e] * matrices['flh_consumer'][a_c_idx[0], :] # Remove nonzero elements row-wise q_c_opt = q_c_opt[q_c_opt.any(axis=1)] + flh_c_opt = flh_c_opt[flh_c_opt.any(axis=1)] + + # Postprocessing producers + if np.shape(matrices['a_p'])[1] == 1: + p_source_inst_opt = p_source_inst + p_source_opt = p_source + flh_s_opt = matrices['flh_source'] + else: + valid_sources = p_source_inst.any(axis=1) + p_source_inst_opt = p_source_inst[valid_sources] + p_source_opt = p_source[valid_sources, :] + flh_s_opt = matrices['flh_source'][valid_sources, :] # Adaption of Incidence Matrix for further postprocessing for q in model.set_n_i: @@ -282,7 +318,11 @@ def mts(model: pyo.ConcreteModel, position=pos_opt, p=p_lin_opt, p_ij=p_ij_opt, - p_ji=p_ji_opt + p_ji=p_ji_opt, + flh_c_opt=flh_c_opt, + flh_s_opt=flh_s_opt, + p_s_inst_opt=p_source_inst_opt, + p_s_opt=p_source_opt ) return res