-
Notifications
You must be signed in to change notification settings - Fork 51
/
coco.py
556 lines (475 loc) · 21.5 KB
/
coco.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
"""
Mask R-CNN
Configurations and data loading code for MS COCO.
Copyright (c) 2017 Matterport, Inc.
Licensed under the MIT License (see LICENSE for details)
Written by Waleed Abdulla
------------------------------------------------------------
Usage: import the module (see Jupyter notebooks for examples), or run from
the command line as such:
# Train a new model starting from pre-trained COCO weights
python3 coco.py train --dataset=/path/to/coco/ --model=coco
# Train a new model starting from ImageNet weights
python3 coco.py train --dataset=/path/to/coco/ --model=imagenet
# Continue training a model that you had trained earlier
python3 coco.py train --dataset=/path/to/coco/ --model=/path/to/weights.h5
# Continue training the last model you trained
python3 coco.py train --dataset=/path/to/coco/ --model=last
# Run COCO evaluatoin on the last model you trained
python3 coco.py evaluate --dataset=/path/to/coco/ --model=last
"""
import os
import time
import numpy as np
# Download and install the Python COCO tools from https://github.com/waleedka/coco
# That's a fork from the original https://github.com/pdollar/coco with a bug
# fix for Python 3.
# I submitted a pull request https://github.com/cocodataset/cocoapi/pull/50
# If the PR is merged then use the original repo.
# Note: Edit PythonAPI/Makefile and replace "python" with "python3".
from pycocotools.coco import COCO
from pycocotools.cocoeval import COCOeval
from pycocotools import mask as maskUtils
import zipfile
import urllib.request
import shutil
from config import Config
import utils
import model as modellib
import torch
# Root directory of the project
ROOT_DIR = os.getcwd()
# Path to trained weights file
COCO_MODEL_PATH = os.path.join(ROOT_DIR, "mask_rcnn_coco.pth")
# Directory to save logs and model checkpoints, if not provided
# through the command line argument --logs
DEFAULT_LOGS_DIR = os.path.join(ROOT_DIR, "logs")
DEFAULT_DATASET_YEAR = "2014"
############################################################
# Configurations
############################################################
class CocoConfig(Config):
"""Configuration for training on MS COCO.
Derives from the base Config class and overrides values specific
to the COCO dataset.
"""
# Give the configuration a recognizable name
NAME = "coco"
# We use one GPU with 8GB memory, which can fit one image.
# Adjust down if you use a smaller GPU.
IMAGES_PER_GPU = 16
# Uncomment to train on 8 GPUs (default is 1)
# GPU_COUNT = 8
# Number of classes (including background)
NUM_CLASSES = 1 + 80 # COCO has 80 classes
############################################################
# Dataset
############################################################
class CocoDataset(utils.Dataset):
def load_coco(self, dataset_dir, subset, year=DEFAULT_DATASET_YEAR, class_ids=None,
class_map=None, return_coco=False, auto_download=False):
"""Load a subset of the COCO dataset.
dataset_dir: The root directory of the COCO dataset.
subset: What to load (train, val, minival, valminusminival)
year: What dataset year to load (2014, 2017) as a string, not an integer
class_ids: If provided, only loads images that have the given classes.
class_map: TODO: Not implemented yet. Supports maping classes from
different datasets to the same class ID.
return_coco: If True, returns the COCO object.
auto_download: Automatically download and unzip MS-COCO images and annotations
"""
if auto_download is True:
self.auto_download(dataset_dir, subset, year)
coco = COCO("{}/annotations/instances_{}{}.json".format(dataset_dir, subset, year))
if subset == "minival" or subset == "valminusminival":
subset = "val"
image_dir = "{}/{}{}".format(dataset_dir, subset, year)
# Load all classes or a subset?
if not class_ids:
# All classes
class_ids = sorted(coco.getCatIds())
# All images or a subset?
if class_ids:
image_ids = []
for id in class_ids:
image_ids.extend(list(coco.getImgIds(catIds=[id])))
# Remove duplicates
image_ids = list(set(image_ids))
else:
# All images
image_ids = list(coco.imgs.keys())
# Add classes
for i in class_ids:
self.add_class("coco", i, coco.loadCats(i)[0]["name"])
# Add images
for i in image_ids:
self.add_image(
"coco", image_id=i,
path=os.path.join(image_dir, coco.imgs[i]['file_name']),
width=coco.imgs[i]["width"],
height=coco.imgs[i]["height"],
annotations=coco.loadAnns(coco.getAnnIds(
imgIds=[i], catIds=class_ids, iscrowd=None)))
if return_coco:
return coco
def auto_download(self, dataDir, dataType, dataYear):
"""Download the COCO dataset/annotations if requested.
dataDir: The root directory of the COCO dataset.
dataType: What to load (train, val, minival, valminusminival)
dataYear: What dataset year to load (2014, 2017) as a string, not an integer
Note:
For 2014, use "train", "val", "minival", or "valminusminival"
For 2017, only "train" and "val" annotations are available
"""
# Setup paths and file names
if dataType == "minival" or dataType == "valminusminival":
imgDir = "{}/{}{}".format(dataDir, "val", dataYear)
imgZipFile = "{}/{}{}.zip".format(dataDir, "val", dataYear)
imgURL = "http://images.cocodataset.org/zips/{}{}.zip".format("val", dataYear)
else:
imgDir = "{}/{}{}".format(dataDir, dataType, dataYear)
imgZipFile = "{}/{}{}.zip".format(dataDir, dataType, dataYear)
imgURL = "http://images.cocodataset.org/zips/{}{}.zip".format(dataType, dataYear)
# print("Image paths:"); print(imgDir); print(imgZipFile); print(imgURL)
# Create main folder if it doesn't exist yet
if not os.path.exists(dataDir):
os.makedirs(dataDir)
# Download images if not available locally
if not os.path.exists(imgDir):
os.makedirs(imgDir)
print("Downloading images to " + imgZipFile + " ...")
with urllib.request.urlopen(imgURL) as resp, open(imgZipFile, 'wb') as out:
shutil.copyfileobj(resp, out)
print("... done downloading.")
print("Unzipping " + imgZipFile)
with zipfile.ZipFile(imgZipFile, "r") as zip_ref:
zip_ref.extractall(dataDir)
print("... done unzipping")
print("Will use images in " + imgDir)
# Setup annotations data paths
annDir = "{}/annotations".format(dataDir)
if dataType == "minival":
annZipFile = "{}/instances_minival2014.json.zip".format(dataDir)
annFile = "{}/instances_minival2014.json".format(annDir)
annURL = "https://dl.dropboxusercontent.com/s/o43o90bna78omob/instances_minival2014.json.zip?dl=0"
unZipDir = annDir
elif dataType == "valminusminival":
annZipFile = "{}/instances_valminusminival2014.json.zip".format(dataDir)
annFile = "{}/instances_valminusminival2014.json".format(annDir)
annURL = "https://dl.dropboxusercontent.com/s/s3tw5zcg7395368/instances_valminusminival2014.json.zip?dl=0"
unZipDir = annDir
else:
annZipFile = "{}/annotations_trainval{}.zip".format(dataDir, dataYear)
annFile = "{}/instances_{}{}.json".format(annDir, dataType, dataYear)
annURL = "http://images.cocodataset.org/annotations/annotations_trainval{}.zip".format(dataYear)
unZipDir = dataDir
# print("Annotations paths:"); print(annDir); print(annFile); print(annZipFile); print(annURL)
# Download annotations if not available locally
if not os.path.exists(annDir):
os.makedirs(annDir)
if not os.path.exists(annFile):
if not os.path.exists(annZipFile):
print("Downloading zipped annotations to " + annZipFile + " ...")
with urllib.request.urlopen(annURL) as resp, open(annZipFile, 'wb') as out:
shutil.copyfileobj(resp, out)
print("... done downloading.")
print("Unzipping " + annZipFile)
with zipfile.ZipFile(annZipFile, "r") as zip_ref:
zip_ref.extractall(unZipDir)
print("... done unzipping")
print("Will use annotations in " + annFile)
def load_mask(self, image_id):
"""Load instance masks for the given image.
Different datasets use different ways to store masks. This
function converts the different mask format to one format
in the form of a bitmap [height, width, instances].
Returns:
masks: A bool array of shape [height, width, instance count] with
one mask per instance.
class_ids: a 1D array of class IDs of the instance masks.
"""
# If not a COCO image, delegate to parent class.
image_info = self.image_info[image_id]
if image_info["source"] != "coco":
return super(CocoDataset, self).load_mask(image_id)
instance_masks = []
class_ids = []
annotations = self.image_info[image_id]["annotations"]
# Build mask of shape [height, width, instance_count] and list
# of class IDs that correspond to each channel of the mask.
for annotation in annotations:
class_id = self.map_source_class_id(
"coco.{}".format(annotation['category_id']))
if class_id:
m = self.annToMask(annotation, image_info["height"],
image_info["width"])
# Some objects are so small that they're less than 1 pixel area
# and end up rounded out. Skip those objects.
if m.max() < 1:
continue
# Is it a crowd? If so, use a negative class ID.
if annotation['iscrowd']:
# Use negative class ID for crowds
class_id *= -1
# For crowd masks, annToMask() sometimes returns a mask
# smaller than the given dimensions. If so, resize it.
if m.shape[0] != image_info["height"] or m.shape[1] != image_info["width"]:
m = np.ones([image_info["height"], image_info["width"]], dtype=bool)
instance_masks.append(m)
class_ids.append(class_id)
# Pack instance masks into an array
if class_ids:
mask = np.stack(instance_masks, axis=2)
class_ids = np.array(class_ids, dtype=np.int32)
return mask, class_ids
else:
# Call super class to return an empty mask
return super(CocoDataset, self).load_mask(image_id)
def image_reference(self, image_id):
"""Return a link to the image in the COCO Website."""
info = self.image_info[image_id]
if info["source"] == "coco":
return "http://cocodataset.org/#explore?id={}".format(info["id"])
else:
super(CocoDataset, self).image_reference(image_id)
# The following two functions are from pycocotools with a few changes.
def annToRLE(self, ann, height, width):
"""
Convert annotation which can be polygons, uncompressed RLE to RLE.
:return: binary mask (numpy 2D array)
"""
segm = ann['segmentation']
if isinstance(segm, list):
# polygon -- a single object might consist of multiple parts
# we merge all parts into one mask rle code
rles = maskUtils.frPyObjects(segm, height, width)
rle = maskUtils.merge(rles)
elif isinstance(segm['counts'], list):
# uncompressed RLE
rle = maskUtils.frPyObjects(segm, height, width)
else:
# rle
rle = ann['segmentation']
return rle
def annToMask(self, ann, height, width):
"""
Convert annotation which can be polygons, uncompressed RLE, or RLE to binary mask.
:return: binary mask (numpy 2D array)
"""
rle = self.annToRLE(ann, height, width)
m = maskUtils.decode(rle)
return m
############################################################
# COCO Evaluation
############################################################
def build_coco_results(dataset, image_ids, rois, class_ids, scores, masks):
"""Arrange resutls to match COCO specs in http://cocodataset.org/#format
"""
# If no results, return an empty list
if rois is None:
return []
results = []
for image_id in image_ids:
# Loop through detections
for i in range(rois.shape[0]):
class_id = class_ids[i]
score = scores[i]
bbox = np.around(rois[i], 1)
mask = masks[:, :, i]
result = {
"image_id": image_id,
"category_id": dataset.get_source_class_id(class_id, "coco"),
"bbox": [bbox[1], bbox[0], bbox[3] - bbox[1], bbox[2] - bbox[0]],
"score": score,
"segmentation": maskUtils.encode(np.asfortranarray(mask))
}
results.append(result)
return results
def evaluate_coco(model, dataset, coco, eval_type="bbox", limit=0, image_ids=None):
"""Runs official COCO evaluation.
dataset: A Dataset object with valiadtion data
eval_type: "bbox" or "segm" for bounding box or segmentation evaluation
limit: if not 0, it's the number of images to use for evaluation
"""
# Pick COCO images from the dataset
image_ids = image_ids or dataset.image_ids
# Limit to a subset
if limit:
image_ids = image_ids[:limit]
# Get corresponding COCO image IDs.
coco_image_ids = [dataset.image_info[id]["id"] for id in image_ids]
t_prediction = 0
t_start = time.time()
results = []
for i, image_id in enumerate(image_ids):
# Load image
image = dataset.load_image(image_id)
# Run detection
t = time.time()
r = model.detect([image])[0]
t_prediction += (time.time() - t)
# Convert results to COCO format
image_results = build_coco_results(dataset, coco_image_ids[i:i + 1],
r["rois"], r["class_ids"],
r["scores"], r["masks"])
results.extend(image_results)
# Load results. This modifies results with additional attributes.
coco_results = coco.loadRes(results)
# Evaluate
cocoEval = COCOeval(coco, coco_results, eval_type)
cocoEval.params.imgIds = coco_image_ids
cocoEval.evaluate()
cocoEval.accumulate()
cocoEval.summarize()
print("Prediction time: {}. Average {}/image".format(
t_prediction, t_prediction / len(image_ids)))
print("Total time: ", time.time() - t_start)
############################################################
# Training
############################################################
if __name__ == '__main__':
import argparse
# Parse command line arguments
parser = argparse.ArgumentParser(
description='Train Mask R-CNN on MS COCO.')
parser.add_argument("command",
metavar="<command>",
help="'train' or 'evaluate' on MS COCO")
parser.add_argument('--dataset', required=True,
metavar="/path/to/coco/",
help='Directory of the MS-COCO dataset')
parser.add_argument('--year', required=False,
default=DEFAULT_DATASET_YEAR,
metavar="<year>",
help='Year of the MS-COCO dataset (2014 or 2017) (default=2014)')
parser.add_argument('--model', required=False,
metavar="/path/to/weights.pth",
help="Path to weights .pth file or 'coco'")
parser.add_argument('--logs', required=False,
default=DEFAULT_LOGS_DIR,
metavar="/path/to/logs/",
help='Logs and checkpoints directory (default=logs/)')
parser.add_argument('--limit', required=False,
default=500,
metavar="<image count>",
help='Images to use for evaluation (default=500)')
parser.add_argument('--download', required=False,
default=False,
metavar="<True|False>",
help='Automatically download and unzip MS-COCO files (default=False)',
type=bool)
parser.add_argument('--lr', required=False,
default=0.001,
help='Learning rate')
parser.add_argument('--batchsize', required=False,
default=4,
help='Batch size')
parser.add_argument('--steps', required=False,
default=200,
help='steps per epoch')
parser.add_argument('--device', required=False,
default="gpu",
help='gpu or cpu')
args = parser.parse_args()
print("Command: ", args.command)
print("Model: ", args.model)
print("Dataset: ", args.dataset)
print("Year: ", args.year)
print("Logs: ", args.logs)
print("Auto Download: ", args.download)
# Configurations
if args.command == "train":
config = CocoConfig()
else:
class InferenceConfig(CocoConfig):
# Set batch size to 1 since we'll be running inference on
# one image at a time. Batch size = GPU_COUNT * IMAGES_PER_GPU
GPU_COUNT = 1
IMAGES_PER_GPU = 1
DETECTION_MIN_CONFIDENCE = 0
config = InferenceConfig()
config.display()
# Create model
if args.command == "train":
model = modellib.MaskRCNN(config=config,
model_dir=args.logs)
else:
model = modellib.MaskRCNN(config=config,
model_dir=args.logs)
# Select Device
if args.device == "gpu":
device = torch.device("cuda")
else:
device = torch.device("cpu")
model = model.to(device)
# Select weights file to load
if args.model:
if args.model.lower() == "coco":
model_path = COCO_MODEL_PATH
elif args.model.lower() == "last":
# Find last trained weights
model_path = model.find_last()[1]
elif args.model.lower() == "imagenet":
# Start from ImageNet trained weights
model_path = config.IMAGENET_MODEL_PATH
else:
model_path = args.model
else:
model_path = ""
# Load weights
print("Loading weights ", model_path)
model.load_weights(model_path)
# input parameters
lr=float(args.lr)
batchsize=int(args.batchsize)
steps=int(args.steps)
# Train or evaluate
if args.command == "train":
# Training dataset. Use the training set and 35K from the
# validation set, as as in the Mask RCNN paper.
dataset_train = CocoDataset()
dataset_train.load_coco(args.dataset, "train", year=args.year, auto_download=args.download)
dataset_train.load_coco(args.dataset, "valminusminival", year=args.year, auto_download=args.download)
dataset_train.prepare()
# Validation dataset
dataset_val = CocoDataset()
dataset_val.load_coco(args.dataset, "minival", year=args.year, auto_download=args.download)
dataset_val.prepare()
# *** This training schedule is an example. Update to your needs ***
# Training - Stage 1
print("Training network heads")
model.train_model(dataset_train, dataset_val,
learning_rate=config.LEARNING_RATE,
epochs=40,
BatchSize=batchsize,
steps=steps,
layers='heads')
# Training - Stage 2
# Finetune layers from ResNet stage 4 and up
print("Fine tune Resnet stage 4 and up")
model.train_model(dataset_train, dataset_val,
learning_rate=config.LEARNING_RATE,
epochs=120,
BatchSize=batchsize,
steps=steps,
layers='4+')
# Training - Stage 3
# Fine tune all layers
print("Fine tune all layers")
model.train_model(dataset_train, dataset_val,
learning_rate=config.LEARNING_RATE / 10,
epochs=160,
BatchSize=batchsize,
steps=steps,
layers='all')
elif args.command == "evaluate":
# Validation dataset
dataset_val = CocoDataset()
coco = dataset_val.load_coco(args.dataset, "minival", year=args.year, return_coco=True, auto_download=args.download)
dataset_val.prepare()
print("Running COCO evaluation on {} images.".format(args.limit))
evaluate_coco(model, dataset_val, coco, "bbox", limit=int(args.limit))
evaluate_coco(model, dataset_val, coco, "segm", limit=int(args.limit))
else:
print("'{}' is not recognized. "
"Use 'train' or 'evaluate'".format(args.command))