-
Notifications
You must be signed in to change notification settings - Fork 7
/
file_utils.py
78 lines (67 loc) · 2.95 KB
/
file_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
# -*- coding: utf-8 -*-
import os
import numpy as np
import cv2
import imgproc
from icecream import ic
# borrowed from https://github.com/lengstrom/fast-style-transfer/blob/master/src/utils.py
def get_files(img_dir):
imgs, masks, xmls = list_files(img_dir)
return imgs, masks, xmls
def list_files(in_path):
img_files = []
mask_files = []
gt_files = []
for (dirpath, dirnames, filenames) in os.walk(in_path):
for file in filenames:
filename, ext = os.path.splitext(file)
ext = str.lower(ext)
if ext == '.jpg' or ext == '.jpeg' or ext == '.gif' or ext == '.png' or ext == '.pgm':
img_files.append(os.path.join(dirpath, file))
elif ext == '.bmp':
mask_files.append(os.path.join(dirpath, file))
elif ext == '.xml' or ext == '.gt' or ext == '.txt':
gt_files.append(os.path.join(dirpath, file))
elif ext == '.zip':
continue
# img_files.sort()
# mask_files.sort()
# gt_files.sort()
return img_files, mask_files, gt_files
def saveResult(img_file, img, boxes, dirname='./result/', verticals=None, texts=None, method='triton'):
""" save text detection result one by one
Args:
img_file (str): image file name
img (array): raw image context
boxes (array): array of result file
Shape: [num_detections, 4] for BB output / [num_detections, 4] for QUAD output
Return:
None
"""
img = np.array(img)
# make result file list
filename, file_ext = os.path.splitext(os.path.basename(img_file))
# result directory
tmp_name = dirname + "res_" + filename
res_file = tmp_name + '.txt' if method!='triton' else tmp_name + '_triton.txt'
res_img_file = tmp_name + '.jpg' if method!='triton' else tmp_name + '_triton.jpg'
if not os.path.isdir(dirname):
os.mkdir(dirname)
with open(res_file, 'w') as f:
for i, box in enumerate(boxes):
poly = np.array(box).astype(np.int32).reshape((-1))
strResult = ','.join([str(p) for p in poly]) + '\r\n'
f.write(strResult)
poly = poly.reshape(-1, 2)
cv2.polylines(img, [poly.reshape((-1, 1, 2))], True, color=(0, 0, 255), thickness=2)
ptColor = (0, 255, 255)
if verticals is not None:
if verticals[i]:
ptColor = (255, 0, 0)
if texts is not None:
font = cv2.FONT_HERSHEY_SIMPLEX
font_scale = 0.5
cv2.putText(img, "{}".format(texts[i]), (poly[0][0]+1, poly[0][1]+1), font, font_scale, (0, 0, 0), thickness=1)
cv2.putText(img, "{}".format(texts[i]), tuple(poly[0]), font, font_scale, (0, 255, 255), thickness=1)
# Save result image
cv2.imwrite(res_img_file, img)