forked from sbyrnes321/tmm
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtmm_core.py
1009 lines (878 loc) · 42.4 KB
/
tmm_core.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
# -*- coding: utf-8 -*-
"""
For information see the docstring of each function, and also see
manual.pdf (should be included with the distribution, otherwise get it
at https://github.com/sbyrnes321/tmm/blob/master/manual.pdf ). Physics background,
conventions, and derivations are at https://arxiv.org/abs/1603.02720
The most two important functions are:
coh_tmm(...) -- the transfer-matrix-method calculation in the coherent
case (i.e. thin films)
inc_tmm(...) -- the transfer-matrix-method calculation in the incoherent
case (i.e. films tens or hundreds of wavelengths thick, or whose
thickness is not very uniform.)
These functions are all imported into the main package (tmm) namespace,
so you can call them with tmm.coh_tmm(...) etc.
"""
from __future__ import division, print_function, absolute_import
from numpy import cos, inf, zeros, array, exp, conj, nan, isnan, pi, sin, seterr
from numpy.lib.scimath import arcsin
import numpy as np
import sys
EPSILON = sys.float_info.epsilon # typical floating-point calculation error
def make_2x2_array(a, b, c, d, dtype=float):
"""
Makes a 2x2 numpy array of [[a,b],[c,d]]
Same as "numpy.array([[a,b],[c,d]], dtype=float)", but ten times faster
"""
my_array = np.empty((2,2), dtype=dtype)
my_array[0,0] = a
my_array[0,1] = b
my_array[1,0] = c
my_array[1,1] = d
return my_array
def is_forward_angle(n, theta):
"""
if a wave is traveling at angle theta from normal in a medium with index n,
calculate whether or not this is the forward-traveling wave (i.e., the one
going from front to back of the stack, like the incoming or outgoing waves,
but unlike the reflected wave). For real n & theta, the criterion is simply
-pi/2 < theta < pi/2, but for complex n & theta, it's more complicated.
See https://arxiv.org/abs/1603.02720 appendix D. If theta is the forward
angle, then (pi-theta) is the backward angle and vice-versa.
"""
assert n.real * n.imag >= 0, ("For materials with gain, it's ambiguous which "
"beam is incoming vs outgoing. See "
"https://arxiv.org/abs/1603.02720 Appendix C.\n"
"n: " + str(n) + " angle: " + str(theta))
ncostheta = n * cos(theta)
if abs(ncostheta.imag) > 100 * EPSILON:
# Either evanescent decay or lossy medium. Either way, the one that
# decays is the forward-moving wave
answer = (ncostheta.imag > 0)
else:
# Forward is the one with positive Poynting vector
# Poynting vector is Re[n cos(theta)] for s-polarization or
# Re[n cos(theta*)] for p-polarization, but it turns out they're consistent
# so I'll just assume s then check both below
answer = (ncostheta.real > 0)
# convert from numpy boolean to the normal Python boolean
answer = bool(answer)
# double-check the answer ... can't be too careful!
error_string = ("It's not clear which beam is incoming vs outgoing. Weird"
" index maybe?\n"
"n: " + str(n) + " angle: " + str(theta))
if answer is True:
assert ncostheta.imag > -100 * EPSILON, error_string
assert ncostheta.real > -100 * EPSILON, error_string
assert (n * cos(theta.conjugate())).real > -100 * EPSILON, error_string
else:
assert ncostheta.imag < 100 * EPSILON, error_string
assert ncostheta.real < 100 * EPSILON, error_string
assert (n * cos(theta.conjugate())).real < 100 * EPSILON, error_string
return answer
def snell(n_1, n_2, th_1):
"""
return angle theta in layer 2 with refractive index n_2, assuming
it has angle th_1 in layer with refractive index n_1. Use Snell's law. Note
that "angles" may be complex!!
"""
# Important that the arcsin here is numpy.lib.scimath.arcsin, not
# numpy.arcsin! (They give different results e.g. for arcsin(2).)
th_2_guess = arcsin(n_1*np.sin(th_1) / n_2)
if is_forward_angle(n_2, th_2_guess):
return th_2_guess
else:
return pi - th_2_guess
def list_snell(n_list, th_0):
"""
return list of angle theta in each layer based on angle th_0 in layer 0,
using Snell's law. n_list is index of refraction of each layer. Note that
"angles" may be complex!!
"""
# Important that the arcsin here is numpy.lib.scimath.arcsin, not
# numpy.arcsin! (They give different results e.g. for arcsin(2).)
angles = arcsin(n_list[0]*np.sin(th_0) / n_list)
# The first and last entry need to be the forward angle (the intermediate
# layers don't matter, see https://arxiv.org/abs/1603.02720 Section 5)
if not is_forward_angle(n_list[0], angles[0]):
angles[0] = pi - angles[0]
if not is_forward_angle(n_list[-1], angles[-1]):
angles[-1] = pi - angles[-1]
return angles
def interface_r(polarization, n_i, n_f, th_i, th_f):
"""
reflection amplitude (from Fresnel equations)
polarization is either "s" or "p" for polarization
n_i, n_f are (complex) refractive index for incident and final
th_i, th_f are (complex) propegation angle for incident and final
(in radians, where 0=normal). "th" stands for "theta".
"""
if polarization == 's':
return ((n_i * cos(th_i) - n_f * cos(th_f)) /
(n_i * cos(th_i) + n_f * cos(th_f)))
elif polarization == 'p':
return ((n_f * cos(th_i) - n_i * cos(th_f)) /
(n_f * cos(th_i) + n_i * cos(th_f)))
else:
raise ValueError("Polarization must be 's' or 'p'")
def interface_t(polarization, n_i, n_f, th_i, th_f):
"""
transmission amplitude (frem Fresnel equations)
polarization is either "s" or "p" for polarization
n_i, n_f are (complex) refractive index for incident and final
th_i, th_f are (complex) propegation angle for incident and final
(in radians, where 0=normal). "th" stands for "theta".
"""
if polarization == 's':
return 2 * n_i * cos(th_i) / (n_i * cos(th_i) + n_f * cos(th_f))
elif polarization == 'p':
return 2 * n_i * cos(th_i) / (n_f * cos(th_i) + n_i * cos(th_f))
else:
raise ValueError("Polarization must be 's' or 'p'")
def R_from_r(r):
"""
Calculate reflected power R, starting with reflection amplitude r.
"""
return abs(r)**2
def T_from_t(pol, t, n_i, n_f, th_i, th_f):
"""
Calculate transmitted power T, starting with transmission amplitude t.
n_i,n_f are refractive indices of incident and final medium.
th_i, th_f are (complex) propegation angles through incident & final medium
(in radians, where 0=normal). "th" stands for "theta".
In the case that n_i,n_f,th_i,th_f are real, formulas simplify to
T=|t|^2 * (n_f cos(th_f)) / (n_i cos(th_i)).
See manual for discussion of formulas
"""
if pol == 's':
return abs(t**2) * (((n_f*cos(th_f)).real) / (n_i*cos(th_i)).real)
elif pol == 'p':
return abs(t**2) * (((n_f*conj(cos(th_f))).real) /
(n_i*conj(cos(th_i))).real)
else:
raise ValueError("Polarization must be 's' or 'p'")
def power_entering_from_r(pol, r, n_i, th_i):
"""
Calculate the power entering the first interface of the stack, starting with
reflection amplitude r. Normally this equals 1-R, but in the unusual case
that n_i is not real, it can be a bit different than 1-R. See manual.
n_i is refractive index of incident medium.
th_i is (complex) propegation angle through incident medium
(in radians, where 0=normal). "th" stands for "theta".
"""
if pol == 's':
return ((n_i*cos(th_i)*(1+conj(r))*(1-r)).real
/ (n_i*cos(th_i)).real)
elif pol == 'p':
return ((n_i*conj(cos(th_i))*(1+r)*(1-conj(r))).real
/ (n_i*conj(cos(th_i))).real)
else:
raise ValueError("Polarization must be 's' or 'p'")
def interface_R(polarization, n_i, n_f, th_i, th_f):
"""
Fraction of light intensity reflected at an interface.
"""
r = interface_r(polarization, n_i, n_f, th_i, th_f)
return R_from_r(r)
def interface_T(polarization, n_i, n_f, th_i, th_f):
"""
Fraction of light intensity transmitted at an interface.
"""
t = interface_t(polarization, n_i, n_f, th_i, th_f)
return T_from_t(polarization, t, n_i, n_f, th_i, th_f)
def coh_tmm(pol, n_list, d_list, th_0, lam_vac):
"""
Main "coherent transfer matrix method" calc. Given parameters of a stack,
calculates everything you could ever want to know about how light
propagates in it. (If performance is an issue, you can delete some of the
calculations without affecting the rest.)
pol is light polarization, "s" or "p".
n_list is the list of refractive indices, in the order that the light would
pass through them. The 0'th element of the list should be the semi-infinite
medium from which the light enters, the last element should be the semi-
infinite medium to which the light exits (if any exits).
th_0 is the angle of incidence: 0 for normal, pi/2 for glancing.
Remember, for a dissipative incoming medium (n_list[0] is not real), th_0
should be complex so that n0 sin(th0) is real (intensity is constant as
a function of lateral position).
d_list is the list of layer thicknesses (front to back). Should correspond
one-to-one with elements of n_list. First and last elements should be "inf".
lam_vac is vacuum wavelength of the light.
Outputs the following as a dictionary (see manual for details)
* r--reflection amplitude
* t--transmission amplitude
* R--reflected wave power (as fraction of incident)
* T--transmitted wave power (as fraction of incident)
* power_entering--Power entering the first layer, usually (but not always)
equal to 1-R (see manual).
* vw_list-- n'th element is [v_n,w_n], the forward- and backward-traveling
amplitudes, respectively, in the n'th medium just after interface with
(n-1)st medium.
* kz_list--normal component of complex angular wavenumber for
forward-traveling wave in each layer.
* th_list--(complex) propagation angle (in radians) in each layer
* pol, n_list, d_list, th_0, lam_vac--same as input
"""
# Convert lists to numpy arrays if they're not already.
n_list = array(n_list)
d_list = array(d_list, dtype=float)
# Input tests
if ((hasattr(lam_vac, 'size') and lam_vac.size > 1)
or (hasattr(th_0, 'size') and th_0.size > 1)):
raise ValueError('This function is not vectorized; you need to run one '
'calculation at a time (1 wavelength, 1 angle, etc.)')
if (n_list.ndim != 1) or (d_list.ndim != 1) or (n_list.size != d_list.size):
raise ValueError("Problem with n_list or d_list!")
assert d_list[0] == d_list[-1] == inf, 'd_list must start and end with inf!'
assert abs((n_list[0]*np.sin(th_0)).imag) < 100*EPSILON, 'Error in n0 or th0!'
assert is_forward_angle(n_list[0], th_0), 'Error in n0 or th0!'
num_layers = n_list.size
# th_list is a list with, for each layer, the angle that the light travels
# through the layer. Computed with Snell's law. Note that the "angles" may be
# complex!
th_list = list_snell(n_list, th_0)
# kz is the z-component of (complex) angular wavevector for forward-moving
# wave. Positive imaginary part means decaying.
kz_list = 2 * np.pi * n_list * cos(th_list) / lam_vac
# delta is the total phase accrued by traveling through a given layer.
# Ignore warning about inf multiplication
olderr = seterr(invalid='ignore')
delta = kz_list * d_list
seterr(**olderr)
# For a very opaque layer, reset delta to avoid divide-by-0 and similar
# errors. The criterion imag(delta) > 35 corresponds to single-pass
# transmission < 1e-30 --- small enough that the exact value doesn't
# matter.
for i in range(1, num_layers-1):
if delta[i].imag > 35:
delta[i] = delta[i].real + 35j
if 'opacity_warning' not in globals():
global opacity_warning
opacity_warning = True
print("Warning: Layers that are almost perfectly opaque "
"are modified to be slightly transmissive, "
"allowing 1 photon in 10^30 to pass through. It's "
"for numerical stability. This warning will not "
"be shown again.")
# t_list[i,j] and r_list[i,j] are transmission and reflection amplitudes,
# respectively, coming from i, going to j. Only need to calculate this when
# j=i+1. (2D array is overkill but helps avoid confusion.)
t_list = zeros((num_layers, num_layers), dtype=complex)
r_list = zeros((num_layers, num_layers), dtype=complex)
for i in range(num_layers-1):
t_list[i,i+1] = interface_t(pol, n_list[i], n_list[i+1],
th_list[i], th_list[i+1])
r_list[i,i+1] = interface_r(pol, n_list[i], n_list[i+1],
th_list[i], th_list[i+1])
# At the interface between the (n-1)st and nth material, let v_n be the
# amplitude of the wave on the nth side heading forwards (away from the
# boundary), and let w_n be the amplitude on the nth side heading backwards
# (towards the boundary). Then (v_n,w_n) = M_n (v_{n+1},w_{n+1}). M_n is
# M_list[n]. M_0 and M_{num_layers-1} are not defined.
# My M is a bit different than Sernelius's, but Mtilde is the same.
M_list = zeros((num_layers, 2, 2), dtype=complex)
for i in range(1, num_layers-1):
M_list[i] = (1/t_list[i,i+1]) * np.dot(
make_2x2_array(exp(-1j*delta[i]), 0, 0, exp(1j*delta[i]),
dtype=complex),
make_2x2_array(1, r_list[i,i+1], r_list[i,i+1], 1, dtype=complex))
Mtilde = make_2x2_array(1, 0, 0, 1, dtype=complex)
for i in range(1, num_layers-1):
Mtilde = np.dot(Mtilde, M_list[i])
Mtilde = np.dot(make_2x2_array(1, r_list[0,1], r_list[0,1], 1,
dtype=complex)/t_list[0,1], Mtilde)
# Net complex transmission and reflection amplitudes
r = Mtilde[1,0]/Mtilde[0,0]
t = 1/Mtilde[0,0]
# vw_list[n] = [v_n, w_n]. v_0 and w_0 are undefined because the 0th medium
# has no left interface.
vw_list = zeros((num_layers, 2), dtype=complex)
vw = array([[t],[0]])
vw_list[-1,:] = np.transpose(vw)
for i in range(num_layers-2, 0, -1):
vw = np.dot(M_list[i], vw)
vw_list[i,:] = np.transpose(vw)
# Net transmitted and reflected power, as a proportion of the incoming light
# power.
R = R_from_r(r)
T = T_from_t(pol, t, n_list[0], n_list[-1], th_0, th_list[-1])
power_entering = power_entering_from_r(pol, r, n_list[0], th_0)
return {'r': r, 't': t, 'R': R, 'T': T, 'power_entering': power_entering,
'vw_list': vw_list, 'kz_list': kz_list, 'th_list': th_list,
'pol': pol, 'n_list': n_list, 'd_list': d_list, 'th_0': th_0,
'lam_vac':lam_vac}
def coh_tmm_reverse(pol, n_list, d_list, th_0, lam_vac):
"""
Reverses the order of the stack then runs coh_tmm.
"""
th_f = snell(n_list[0], n_list[-1], th_0)
return coh_tmm(pol, n_list[::-1], d_list[::-1], th_f, lam_vac)
def ellips(n_list, d_list, th_0, lam_vac):
"""
Calculates ellipsometric parameters, in radians.
Warning: Conventions differ. You may need to subtract pi/2 or whatever.
"""
s_data = coh_tmm('s', n_list, d_list, th_0, lam_vac)
p_data = coh_tmm('p', n_list, d_list, th_0, lam_vac)
rs = s_data['r']
rp = p_data['r']
return {'psi': np.arctan(abs(rp/rs)), 'Delta': np.angle(-rp/rs)}
def unpolarized_RT(n_list, d_list, th_0, lam_vac):
"""
Calculates reflected and transmitted power for unpolarized light.
"""
s_data = coh_tmm('s', n_list, d_list, th_0, lam_vac)
p_data = coh_tmm('p', n_list, d_list, th_0, lam_vac)
R = (s_data['R'] + p_data['R']) / 2.
T = (s_data['T'] + p_data['T']) / 2.
return {'R': R, 'T': T}
def position_resolved(layer, distance, coh_tmm_data):
"""
Starting with output of coh_tmm(), calculate the Poynting vector,
absorbed energy density, and E-field at a specific location. The
location is defined by (layer, distance), defined the same way as in
find_in_structure_with_inf(...).
Returns a dictionary containing:
* poyn - the component of Poynting vector normal to the interfaces
* absor - the absorbed energy density at that point
* Ex and Ey and Ez - the electric field amplitudes, where
z is normal to the interfaces and the light rays are in the x,z plane.
The E-field is in units where the incoming |E|=1; see
https://arxiv.org/pdf/1603.02720.pdf for formulas.
"""
if layer > 0:
v,w = coh_tmm_data['vw_list'][layer]
else:
v = 1
w = coh_tmm_data['r']
kz = coh_tmm_data['kz_list'][layer]
th = coh_tmm_data['th_list'][layer]
n = coh_tmm_data['n_list'][layer]
n_0 = coh_tmm_data['n_list'][0]
th_0 = coh_tmm_data['th_0']
pol = coh_tmm_data['pol']
assert ((layer >= 1 and 0 <= distance <= coh_tmm_data['d_list'][layer])
or (layer == 0 and distance <= 0))
# Amplitude of forward-moving wave is Ef, backwards is Eb
Ef = v * exp(1j * kz * distance)
Eb = w * exp(-1j * kz * distance)
# Poynting vector
if pol == 's':
poyn = ((n*cos(th)*conj(Ef+Eb)*(Ef-Eb)).real) / (n_0*cos(th_0)).real
elif pol == 'p':
poyn = (((n*conj(cos(th))*(Ef+Eb)*conj(Ef-Eb)).real)
/ (n_0*conj(cos(th_0))).real)
# Absorbed energy density
if pol == 's':
absor = (n*cos(th)*kz*abs(Ef+Eb)**2).imag / (n_0*cos(th_0)).real
elif pol == 'p':
absor = (n*conj(cos(th))*
(kz*abs(Ef-Eb)**2-conj(kz)*abs(Ef+Eb)**2)
).imag / (n_0*conj(cos(th_0))).real
# Electric field
if pol == 's':
Ex = 0
Ey = Ef + Eb
Ez = 0
elif pol == 'p':
Ex = (Ef - Eb) * cos(th)
Ey = 0
Ez = (-Ef - Eb) * sin(th)
return {'poyn': poyn, 'absor': absor, 'Ex': Ex, 'Ey': Ey, 'Ez': Ez}
def find_in_structure(d_list, distance):
"""
d_list is list of thicknesses of layers, all of which are finite.
distance is the distance from the front of the whole multilayer structure
(i.e., from the start of layer 0.)
Function returns [layer,z], where:
* layer is what number layer you're at.
* z is the distance into that layer.
For large distance, layer = len(d_list), even though d_list[layer] doesn't
exist in this case. For negative distance, return [-1, distance]
"""
if sum(d_list) == inf:
raise ValueError('This function expects finite arguments')
if distance < 0:
return [-1, distance]
layer = 0
while (layer < len(d_list)) and (distance >= d_list[layer]):
distance -= d_list[layer]
layer += 1
return [layer, distance]
def find_in_structure_with_inf(d_list, distance):
"""
d_list is list of thicknesses of layers [inf, blah, blah, ..., blah, inf]
distance is the distance from the front of the whole multilayer structure
(i.e., from the start of layer 1.)
Function returns [layer,z], where:
* layer is what number layer you're at,
* z is the distance into that layer.
For distance < 0, returns [0, distance]. So the first interface can be described as
either [0,0] or [1,0].
"""
if distance < 0:
return [0, distance]
[layer, distance_in_layer] = find_in_structure(d_list[1:-1], distance)
return [layer+1, distance_in_layer]
def layer_starts(d_list):
"""
Gives the location of the start of any given layer, relative to the front
of the whole multilayer structure. (i.e. the start of layer 1)
d_list is list of thicknesses of layers [inf, blah, blah, ..., blah, inf]
"""
final_answer = zeros(len(d_list))
final_answer[0] = -inf
final_answer[1] = 0
for i in range(2, len(d_list)):
final_answer[i] = final_answer[i-1] + d_list[i-1]
return final_answer
class absorp_analytic_fn:
"""
Absorption in a given layer is a pretty simple analytical function:
The sum of four exponentials.
a(z) = A1*exp(a1*z) + A2*exp(-a1*z)
+ A3*exp(1j*a3*z) + conj(A3)*exp(-1j*a3*z)
where a(z) is absorption at depth z, with z=0 being the start of the layer,
and A1,A2,a1,a3 are real numbers, with a1>0, a3>0, and A3 is complex.
The class stores these five parameters, as well as d, the layer thickness.
This gives absorption as a fraction of intensity coming towards the first
layer of the stack.
"""
def fill_in(self, coh_tmm_data, layer):
"""
fill in the absorption analytic function starting from coh_tmm_data
(the output of coh_tmm), for absorption in the layer with index
"layer".
"""
pol = coh_tmm_data['pol']
v = coh_tmm_data['vw_list'][layer][0]
w = coh_tmm_data['vw_list'][layer][1]
kz = coh_tmm_data['kz_list'][layer]
n = coh_tmm_data['n_list'][layer]
n_0 = coh_tmm_data['n_list'][0]
th_0 = coh_tmm_data['th_0']
th = coh_tmm_data['th_list'][layer]
self.d = coh_tmm_data['d_list'][layer]
self.a1 = 2*kz.imag
self.a3 = 2*kz.real
if pol == 's':
temp = (n*cos(th)*kz).imag / (n_0*cos(th_0)).real
self.A1 = temp * abs(w)**2
self.A2 = temp * abs(v)**2
self.A3 = temp * v * conj(w)
else: # pol=='p'
temp = (2*(kz.imag)*(n*cos(conj(th))).real /
(n_0*conj(cos(th_0))).real)
self.A1 = temp * abs(w)**2
self.A2 = temp * abs(v)**2
self.A3 = v * conj(w) * (-2*(kz.real)*(n*cos(conj(th))).imag /
(n_0*conj(cos(th_0))).real)
return self
def copy(self):
"""
Create copy of an absorp_analytic_fn object
"""
a = absorp_analytic_fn()
(a.A1, a.A2, a.A3, a.a1, a.a3, a.d) = (
self.A1, self.A2, self.A3, self.a1, self.a3, self.d)
return a
def run(self, z):
"""
Calculates absorption at a given depth z, where z=0 is the start of the
layer.
"""
return (self.A1*exp(self.a1 * z) + self.A2*exp(-self.a1 * z)
+ self.A3*exp(1j*self.a3*z) + conj(self.A3)*exp(-1j*self.a3*z))
def flip(self):
"""
Flip the function front-to-back, to describe a(d-z) instead of a(z),
where d is layer thickness.
"""
newA1 = self.A2*exp(-self.a1 * self.d)
newA2 = self.A1*exp(self.a1 * self.d)
self.A1, self.A2 = newA1, newA2
self.A3 = conj(self.A3 * exp(1j * self.a3 * self.d))
return self
def scale(self, factor):
"""
multiplies the absorption at each point by "factor".
"""
self.A1 *= factor
self.A2 *= factor
self.A3 *= factor
return self
def add(self, b):
"""
adds another compatible absorption analytical function
"""
if (b.a1 != self.a1) or (b.a3 != self.a3):
raise ValueError('Incompatible absorption analytical functions!')
self.A1 += b.A1
self.A2 += b.A2
self.A3 += b.A3
return self
def absorp_in_each_layer(coh_tmm_data):
"""
An array listing what proportion of light is absorbed in each layer.
Assumes the final layer eventually absorbs all transmitted light.
Assumes the initial layer eventually absorbs all reflected light.
Entries of array should sum to 1.
coh_tmm_data is output of coh_tmm()
"""
num_layers = len(coh_tmm_data['d_list'])
power_entering_each_layer = zeros(num_layers)
power_entering_each_layer[0] = 1
power_entering_each_layer[1] = coh_tmm_data['power_entering']
power_entering_each_layer[-1] = coh_tmm_data['T']
for i in range(2, num_layers-1):
power_entering_each_layer[i] = position_resolved(i, 0, coh_tmm_data)['poyn']
final_answer = zeros(num_layers)
final_answer[0:-1] = -np.diff(power_entering_each_layer)
final_answer[-1] = power_entering_each_layer[-1]
return final_answer
def inc_group_layers(n_list, d_list, c_list):
"""
Helper function for inc_tmm. Groups and sorts layer information.
See coh_tmm for definitions of n_list, d_list.
c_list is "coherency list". Each entry should be 'i' for incoherent or 'c'
for 'coherent'.
A "stack" is a group of one or more consecutive coherent layers. A "stack
index" labels the stacks 0,1,2,.... The "within-stack index" counts the
coherent layers within the stack 1,2,3... [index 0 is the incoherent layer
before the stack starts]
An "incoherent layer index" labels the incoherent layers 0,1,2,...
An "alllayer index" labels all layers (all elements of d_list) 0,1,2,...
Returns info about how the layers relate:
* stack_d_list[i] = list of thicknesses of each coherent layer in the i'th
stack, plus starting and ending with "inf"
* stack_n_list[i] = list of refractive index of each coherent layer in the
i'th stack, plus the two surrounding incoherent layers
* all_from_inc[i] = j means that the layer with incoherent index i has
alllayer index j
* inc_from_all[i] = j means that the layer with alllayer index i has
incoherent index j. If j = nan then the layer is coherent.
* all_from_stack[i1][i2] = j means that the layer with stack index i1 and
within-stack index i2 has alllayer index j
* stack_from_all[i] = [j1 j2] means that the layer with alllayer index i is
part of stack j1 with withinstack-index j2. If stack_from_all[i] = nan
then the layer is incoherent
* inc_from_stack[i] = j means that the i'th stack comes after the layer
with incoherent index j, and before the layer with incoherent index j+1.
* stack_from_inc[i] = j means that the layer with incoherent index i comes
immediately after the j'th stack. If j=nan, it is not immediately
following a stack.
* num_stacks = number of stacks
* num_inc_layers = number of incoherent layers
* num_layers = number of layers total
"""
if (n_list.ndim != 1) or (d_list.ndim != 1):
raise ValueError("Problem with n_list or d_list!")
if (d_list[0] != inf) or (d_list[-1] != inf):
raise ValueError('d_list must start and end with inf!')
if (c_list[0] != 'i') or (c_list[-1] != 'i'):
raise ValueError('c_list should start and end with "i"')
if not n_list.size == d_list.size == len(c_list):
raise ValueError('List sizes do not match!')
inc_index = 0
stack_index = 0
stack_d_list = []
stack_n_list = []
all_from_inc = []
inc_from_all = []
all_from_stack = []
stack_from_all = []
inc_from_stack = []
stack_from_inc = []
stack_in_progress = False
for alllayer_index in range(n_list.size):
if c_list[alllayer_index] == 'c': #coherent layer
inc_from_all.append(nan)
if not stack_in_progress: #this layer is starting new stack
stack_in_progress = True
ongoing_stack_d_list = [inf, d_list[alllayer_index]]
ongoing_stack_n_list = [n_list[alllayer_index-1],
n_list[alllayer_index]]
stack_from_all.append([stack_index,1])
all_from_stack.append([alllayer_index-1, alllayer_index])
inc_from_stack.append(inc_index-1)
within_stack_index = 1
else: #another coherent layer in the same stack
ongoing_stack_d_list.append(d_list[alllayer_index])
ongoing_stack_n_list.append(n_list[alllayer_index])
within_stack_index += 1
stack_from_all.append([stack_index, within_stack_index])
all_from_stack[-1].append(alllayer_index)
elif c_list[alllayer_index] == 'i': #incoherent layer
stack_from_all.append(nan)
inc_from_all.append(inc_index)
all_from_inc.append(alllayer_index)
if not stack_in_progress: #previous layer was also incoherent
stack_from_inc.append(nan)
else: #previous layer was coherent
stack_in_progress = False
stack_from_inc.append(stack_index)
ongoing_stack_d_list.append(inf)
stack_d_list.append(ongoing_stack_d_list)
ongoing_stack_n_list.append(n_list[alllayer_index])
stack_n_list.append(ongoing_stack_n_list)
all_from_stack[-1].append(alllayer_index)
stack_index += 1
inc_index += 1
else:
raise ValueError("Error: c_list entries must be 'i' or 'c'!")
return {'stack_d_list':stack_d_list,
'stack_n_list':stack_n_list,
'all_from_inc':all_from_inc,
'inc_from_all':inc_from_all,
'all_from_stack':all_from_stack,
'stack_from_all':stack_from_all,
'inc_from_stack':inc_from_stack,
'stack_from_inc':stack_from_inc,
'num_stacks':len(all_from_stack),
'num_inc_layers':len(all_from_inc),
'num_layers':len(n_list)}
def inc_tmm(pol, n_list, d_list, c_list, th_0, lam_vac):
"""
Incoherent, or partly-incoherent-partly-coherent, transfer matrix method.
See coh_tmm for definitions of pol, n_list, d_list, th_0, lam_vac.
c_list is "coherency list". Each entry should be 'i' for incoherent or 'c'
for 'coherent'.
If an incoherent layer has real refractive index (no absorption), then its
thickness doesn't affect the calculation results.
See https://arxiv.org/abs/1603.02720 for physics background and some
of the definitions.
Outputs the following as a dictionary:
* R--reflected wave power (as fraction of incident)
* T--transmitted wave power (as fraction of incident)
* VW_list-- n'th element is [V_n,W_n], the forward- and backward-traveling
intensities, respectively, at the beginning of the n'th incoherent medium.
* coh_tmm_data_list--n'th element is coh_tmm_data[n], the output of
the coh_tmm program for the n'th "stack" (group of one or more
consecutive coherent layers).
* coh_tmm_bdata_list--n'th element is coh_tmm_bdata[n], the output of the
coh_tmm program for the n'th stack, but with the layers of the stack
in reverse order.
* stackFB_list--n'th element is [F,B], where F is light traveling forward
towards the n'th stack and B is light traveling backwards towards the n'th
stack.
* num_layers-- total number both coherent and incoherent.
* power_entering_list--n'th element is the normalized Poynting vector
crossing the interface into the n'th incoherent layer from the previous
(coherent or incoherent) layer.
* Plus, all the outputs of inc_group_layers
"""
# Convert lists to numpy arrays if they're not already.
n_list = array(n_list)
d_list = array(d_list, dtype=float)
# Input tests
if (np.real_if_close(n_list[0]*np.sin(th_0))).imag != 0:
raise ValueError('Error in n0 or th0!')
group_layers_data = inc_group_layers(n_list, d_list, c_list)
num_inc_layers = group_layers_data['num_inc_layers']
num_stacks = group_layers_data['num_stacks']
stack_n_list = group_layers_data['stack_n_list']
stack_d_list = group_layers_data['stack_d_list']
all_from_stack = group_layers_data['all_from_stack']
all_from_inc = group_layers_data['all_from_inc']
all_from_stack = group_layers_data['all_from_stack']
stack_from_inc = group_layers_data['stack_from_inc']
inc_from_stack = group_layers_data['inc_from_stack']
# th_list is a list with, for each layer, the angle that the light travels
# through the layer. Computed with Snell's law. Note that the "angles" may be
# complex!
th_list = list_snell(n_list, th_0)
# coh_tmm_data_list[i] is the output of coh_tmm for the i'th stack
coh_tmm_data_list = []
# coh_tmm_bdata_list[i] is the same stack as coh_tmm_data_list[i] but
# with order of layers reversed
coh_tmm_bdata_list = []
for i in range(num_stacks):
coh_tmm_data_list.append(coh_tmm(pol, stack_n_list[i],
stack_d_list[i],
th_list[all_from_stack[i][0]],
lam_vac))
coh_tmm_bdata_list.append(coh_tmm_reverse(pol, stack_n_list[i],
stack_d_list[i],
th_list[all_from_stack[i][0]],
lam_vac))
# P_list[i] is fraction not absorbed in a single pass through i'th incoherent
# layer.
P_list = zeros(num_inc_layers)
for inc_index in range(1,num_inc_layers-1): #skip 0'th and last (infinite)
i = all_from_inc[inc_index]
P_list[inc_index] = exp(-4 * np.pi * d_list[i]
* (n_list[i] * cos(th_list[i])).imag / lam_vac)
# For a very opaque layer, reset P to avoid divide-by-0 and similar
# errors.
if P_list[inc_index] < 1e-30:
P_list[inc_index] = 1e-30
# T_list[i,j] and R_list[i,j] are transmission and reflection powers,
# respectively, coming from the i'th incoherent layer, going to the j'th
# incoherent layer. Only need to calculate this when j=i+1 or j=i-1.
# (2D array is overkill but helps avoid confusion.)
# initialize these arrays
T_list = zeros((num_inc_layers, num_inc_layers))
R_list = zeros((num_inc_layers, num_inc_layers))
for inc_index in range(num_inc_layers-1): #looking at interface i -> i+1
alllayer_index = all_from_inc[inc_index]
nextstack_index = stack_from_inc[inc_index+1]
if isnan(nextstack_index): #next layer is incoherent
R_list[inc_index, inc_index+1] = (
interface_R(pol, n_list[alllayer_index],
n_list[alllayer_index+1],
th_list[alllayer_index],
th_list[alllayer_index+1]))
T_list[inc_index, inc_index+1] = (
interface_T(pol, n_list[alllayer_index],
n_list[alllayer_index+1],
th_list[alllayer_index],
th_list[alllayer_index+1]))
R_list[inc_index+1, inc_index] = (
interface_R(pol, n_list[alllayer_index+1],
n_list[alllayer_index],
th_list[alllayer_index+1],
th_list[alllayer_index]))
T_list[inc_index+1, inc_index] = (
interface_T(pol, n_list[alllayer_index+1],
n_list[alllayer_index],
th_list[alllayer_index+1],
th_list[alllayer_index]))
else: #next layer is coherent
R_list[inc_index,inc_index+1] = (
coh_tmm_data_list[nextstack_index]['R'])
T_list[inc_index,inc_index+1] = (
coh_tmm_data_list[nextstack_index]['T'])
R_list[inc_index+1,inc_index] = (
coh_tmm_bdata_list[nextstack_index]['R'])
T_list[inc_index+1,inc_index] = (
coh_tmm_bdata_list[nextstack_index]['T'])
# L is the transfer matrix from the i'th to (i+1)st incoherent layer, see
# manual
L_list = [nan] # L_0 is not defined because 0'th layer has no beginning.
Ltilde = (array([[1,-R_list[1,0]],
[R_list[0,1],
T_list[1,0]*T_list[0,1] - R_list[1,0]*R_list[0,1]]])
/ T_list[0,1])
for i in range(1,num_inc_layers-1):
L = np.dot(
array([[1/P_list[i],0],[0,P_list[i]]]),
array([[1,-R_list[i+1,i]],
[R_list[i,i+1],
T_list[i+1,i]*T_list[i,i+1] - R_list[i+1,i]*R_list[i,i+1]]])
) / T_list[i,i+1]
L_list.append(L)
Ltilde = np.dot(Ltilde,L)
T = 1 / Ltilde[0,0]
R = Ltilde[1,0] / Ltilde[0,0]
# VW_list[n] = [V_n, W_n], the forward- and backward-moving intensities
# at the beginning of the n'th incoherent layer. VW_list[0] is undefined
# because 0'th layer has no beginning.
VW_list=zeros((num_inc_layers, 2))
VW_list[0,:] = [nan, nan]
VW = array([[T],[0]])
VW_list[-1,:] = np.transpose(VW)
for i in range(num_inc_layers-2, 0, -1):
VW = np.dot(L_list[i], VW)
VW_list[i,:] = np.transpose(VW)
# stackFB_list[n]=[F,B] means that F is light traveling forward towards n'th
# stack and B is light traveling backwards towards n'th stack.
# Reminder: inc_from_stack[i] = j means that the i'th stack comes after the
# layer with incoherent index j.
stackFB_list = []
for stack_index, prev_inc_index in enumerate(inc_from_stack):
if prev_inc_index == 0: #stack starts right after semi-infinite layer.
F = 1
else:
F = VW_list[prev_inc_index][0] * P_list[prev_inc_index]
B = VW_list[prev_inc_index+1][1]
stackFB_list.append([F,B])
# power_entering_list[i] is the normalized Poynting vector crossing the
# interface into the i'th incoherent layer from the previous (coherent or
# incoherent) layer. See manual.
power_entering_list = [1] #"1" by convention for infinite 0th layer.
for i in range(1,num_inc_layers):
prev_stack_index = stack_from_inc[i]
if isnan(prev_stack_index):
#case where this layer directly follows another incoherent layer
if i == 1: #special case because VW_list[0] & A_list[0] are undefined
power_entering_list.append(T_list[0,1]
- VW_list[1][1]*T_list[1,0])
else:
power_entering_list.append(
VW_list[i-1][0]*P_list[i-1]*T_list[i-1,i]
- VW_list[i][1]*T_list[i,i-1])
else: #case where this layer follows a coherent stack
power_entering_list.append(
stackFB_list[prev_stack_index][0] *
coh_tmm_data_list[prev_stack_index]['T']
- stackFB_list[prev_stack_index][1] *
coh_tmm_bdata_list[prev_stack_index]['power_entering'])
ans = {'T':T, 'R':R, 'VW_list':VW_list,
'coh_tmm_data_list':coh_tmm_data_list,
'coh_tmm_bdata_list':coh_tmm_bdata_list,
'stackFB_list':stackFB_list,
'power_entering_list':power_entering_list}
ans.update(group_layers_data)
return ans
def inc_absorp_in_each_layer(inc_data):
"""
A list saying what proportion of light is absorbed in each layer.
Assumes all reflected light is eventually absorbed in the 0'th medium, and
all transmitted light is eventually absorbed in the final medium.
Returns a list [layer0absorp, layer1absorp, ...]. Entries should sum to 1.
inc_data is output of incoherent_main()
"""
# Reminder: inc_from_stack[i] = j means that the i'th stack comes after the
# layer with incoherent index j.
# Reminder: stack_from_inc[i] = j means that the layer
# with incoherent index i comes immediately after the j'th stack (or j=nan
# if it's not immediately following a stack).
stack_from_inc = inc_data['stack_from_inc']
power_entering_list = inc_data['power_entering_list']
# stackFB_list[n]=[F,B] means that F is light traveling forward towards n'th
# stack and B is light traveling backwards towards n'th stack.
stackFB_list = inc_data['stackFB_list']
absorp_list = []
# loop through incoherent layers, excluding the final layer
for i, power_entering in enumerate(power_entering_list[:-1]):
if isnan(stack_from_inc[i+1]):
# case that incoherent layer i is right before another incoherent layer
absorp_list.append(power_entering_list[i]-power_entering_list[i+1])
else: #incoherent layer i is immediately before a coherent stack
j = stack_from_inc[i+1]
coh_tmm_data = inc_data['coh_tmm_data_list'][j]
coh_tmm_bdata = inc_data['coh_tmm_bdata_list'][j]
# First, power in the incoherent layer...
power_exiting = (
stackFB_list[j][0] * coh_tmm_data['power_entering']
- stackFB_list[j][1] * coh_tmm_bdata['T'])
absorp_list.append(power_entering_list[i]-power_exiting)
# Next, power in the coherent stack...
stack_absorp = ((stackFB_list[j][0] *
absorp_in_each_layer(coh_tmm_data))[1:-1]
+ (stackFB_list[j][1] *
absorp_in_each_layer(coh_tmm_bdata))[-2:0:-1])
absorp_list.extend(stack_absorp)
# final semi-infinite layer
absorp_list.append(inc_data['T'])
return absorp_list
def inc_find_absorp_analytic_fn(layer, inc_data):
"""
Outputs an absorp_analytic_fn object for a coherent layer within a
partly-incoherent stack.
inc_data is output of incoherent_main()
"""
j = inc_data['stack_from_all'][layer]
if np.any(isnan(j)):
raise ValueError('layer must be coherent for this function!')
[stackindex, withinstackindex] = j
forwardfunc = absorp_analytic_fn()