diff --git a/articles/mcradds.html b/articles/mcradds.html index 04364ca..bb285fb 100644 --- a/articles/mcradds.html +++ b/articles/mcradds.html @@ -147,7 +147,7 @@
data("qualData") data("platelet") -# data(creatinine, package = "mcr") +data(creatinine, package = "mcr") data("calcium") data("ldlroc") data("PDL1RP") @@ -382,19 +382,51 @@
,Estimating Regression coefficientmcreg
getCoefficients
andcalcBias
. If you would like to utilize the entire functions inmcr
package, just adding the specific package name in -front of each of them, likemcr::calcBias()
, so that it +front of each of them, likemcr::calcBias()
, so that it looks the function is called frommcr
package. -Please to be noted that the
mcr
package is not available -in CRAN, so themcreg
ormcreg2
function can -not be used temporarily.+#> Jackknife based calculation of standard error and confidence intervals according to Linnet's method. +printSummary(fit) +#> +#> +#> ------------------------------------------ +#> +#> Reference method: Method1 +#> Test method: Method2 +#> Number of data points: 120 +#> +#> ------------------------------------------ +#> +#> The confidence intervals are calculated with jackknife (Linnet's) method. +#> Confidence level: 95% +#> Error ratio: 1 +#> +#> ------------------------------------------ +#> +#> DEMING REGRESSION FIT: +#> +#> EST SE LCI UCI +#> Intercept 4.335885 1.568968372 1.2289002 7.442869 +#> Slope 1.012951 0.009308835 0.9945175 1.031386 +#> +#> +#> ------------------------------------------ +#> +#> JACKKNIFE SUMMARY +#> +#> EST Jack.Mean Bias Jack.SE +#> Intercept 4.335885 4.336377 4.918148e-04 1.568968372 +#> Slope 1.012951 1.012950 -1.876312e-06 0.009308835 +#> NULL +getCoefficients(fit) +#> EST SE LCI UCI +#> Intercept 4.335885 1.568968372 1.2289002 7.442869 +#> Slope 1.012951 0.009308835 0.9945175 1.031386# Deming regression -fit <- mcreg( +fit <- mcreg( x = platelet$Comparative, y = platelet$Candidate, error.ratio = 1, method.reg = "Deming", method.ci = "jackknife" ) -printSummary(fit) -getCoefficients(fit)
30
, obviously this is a make-up number. Then you
can use the fit
object above to estimate the bias using
calcBias
function.
-Please to be noted that the mcr
package is not available
-in CRAN, so the calcBias
function can not be used
-temporarily.
# absolute bias.
-calcBias(fit, x.levels = c(30))
+calcBias(fit, x.levels = c(30))
+#> Level Bias SE LCI UCI
+#> X1 30 4.724429 1.378232 1.995155 7.453704
# proportional bias.
-calcBias(fit, x.levels = c(30), type = "proportional")
In addition, mcradds
also provides outlier methods for
evaluating Reference Range, such as ‘Tukey’ and ‘Dixon’ that have been
wrapped in refInterval()
function.
The first two methods are also accepted by NMPA guideline, but the robust method is not recommended by NMPA because if you want to establish a reference interval for your assay, you must collect the at @@ -949,17 +1000,15 @@
To generate the regression plot, you should create the object from
-mcreg()
function and then call autoplot
+mcreg()
function and then call autoplot
straightforward.
Please to be noted that the mcr
package is not available
-in CRAN, so the mcreg
or mcreg2
function can
-not be used temporarily.
-fit <- mcreg2(
+fit <- mcreg(
x = platelet$Comparative, y = platelet$Candidate,
method.reg = "PaBa", method.ci = "bootstrap"
)
autoplot(fit)
More arguments can be used as shown below.
autoplot(
@@ -972,6 +1021,7 @@ Regression plot x.title = "Reference",
y.title = "Test"
)
(BAsummary
, MCResult
)
input, depending on which function
-you have done, blandAltman()
or mcreg()
.
blandAltman()
or mcreg()
.
(logical
)
whether to add regression line where the slope and
+intercept are obtained from mcr::mcreg()
function, default is TRUE.
(logical
)
whether to adjust the ranges of x-axis and y-axis
+are identical. If equal.axis = TRUE
, x-axis will be equal to y-axis.
(logical
)
whether to present the title in the legend.
(integer
)
the number of digits after the decimal point
+in the legend.
h_difference()
to see the type details.
h_difference()
to see the type details.
mcr::mcreg()
to see the regression parameters.