-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathrun.py
85 lines (63 loc) · 2.64 KB
/
run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
from typing import Callable
# Export the PROJECT_ROOT enviroment as the directory where this script is called from.
# You may want to modify these depending on your import structure.
import os
os.environ["PROJECT_ROOT"] = "."
os.environ["PYTHONPATH"] = "."
# Trick for avoiding problems
import torch
torch.multiprocessing.set_sharing_strategy("file_system")
import dotenv
import hydra
from omegaconf import OmegaConf, DictConfig
# load environment variables from `.env` file if it exists
# recursively searches for `.env` in all folders starting from work dir
dotenv.load_dotenv(override=True)
OmegaConf.register_new_resolver("eval", eval)
OmegaConf.register_new_resolver("div_up", lambda x, y: (x + y - 1) // y)
# Hack
# https://github.com/pytorch/pytorch/issues/973#issuecomment-346405667
import resource
rlimit = resource.getrlimit(resource.RLIMIT_NOFILE)
resource.setrlimit(resource.RLIMIT_NOFILE, (4096, rlimit[1]))
def dictconfig_filter_key(d: DictConfig, fn: Callable) -> DictConfig:
"""Only keep keys where fn(key) is True. Support nested DictConfig."""
return DictConfig(
{
k: dictconfig_filter_key(v, fn) if isinstance(v, DictConfig) else v
for k, v in d.items()
if fn(k)
}
)
@hydra.main(version_base="1.2", config_path="configs/", config_name="train")
def main(config: DictConfig):
# fix for: _tkinter.TclError: no display name and no $DISPLAY environment variable
import matplotlib
matplotlib.use("Agg")
# Remove config keys that start with '__'. These are meant to be used only in computing
# other entries in the config.-----
config = dictconfig_filter_key(config, lambda k: not k.startswith("__"))
# Imports should be nested inside @hydra.main to optimize tab completion
# Read more here: https://github.com/facebookresearch/hydra/issues/934
from src.train import main as train
from src.eval import main as evaluate
from src.utils import utils
# A couple of optional utilities:
# - disabling python warnings
# - forcing debug-friendly configuration
# - verifying experiment name is set when running in experiment mode
# You can safely get rid of this line if you don't want those
utils.extras(config)
# Pretty print config using Rich library
if config.get("print_config"):
utils.print_config(config, resolve=True)
# Train model
mode = config.get("mode", "train")
if mode not in ["train", "eval"]:
raise NotImplementedError(f"mode {mode} not supported")
if mode == "train":
return train(config)
elif mode == "eval":
return evaluate(config)
if __name__ == "__main__":
main()