-
Notifications
You must be signed in to change notification settings - Fork 24
/
KaitaiStream.cs
773 lines (666 loc) · 25.6 KB
/
KaitaiStream.cs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
using System;
using System.Collections.Generic;
using System.IO;
using System.IO.Compression;
using System.Linq;
using System.Globalization;
namespace Kaitai
{
/// <summary>
/// The base Kaitai stream which exposes an API for the Kaitai Struct framework.
/// It's based off a <code>BinaryReader</code>, which is a little-endian reader.
/// </summary>
public partial class KaitaiStream : BinaryReader
{
#region Constructors
public KaitaiStream(Stream stream) : base(stream)
{
}
///<summary>
/// Creates a KaitaiStream backed by a file (RO)
///</summary>
public KaitaiStream(string file) : base(File.Open(file, FileMode.Open, FileAccess.Read, FileShare.Read))
{
}
///<summary>
///Creates a KaitaiStream backed by a byte buffer
///</summary>
public KaitaiStream(byte[] bytes) : base(new MemoryStream(bytes))
{
}
private int BitsLeft = 0;
private ulong Bits = 0;
static readonly bool IsLittleEndian = BitConverter.IsLittleEndian;
#endregion
#region Stream positioning
/// <summary>
/// Check if the stream position is at the end of the stream
/// </summary>
public bool IsEof
{
get { return BaseStream.Position >= BaseStream.Length && BitsLeft == 0; }
}
/// <summary>
/// Seek to a specific position from the beginning of the stream
/// </summary>
/// <param name="position">The position to seek to</param>
public void Seek(long position)
{
BaseStream.Seek(position, SeekOrigin.Begin);
}
/// <summary>
/// Get the current position in the stream
/// </summary>
public long Pos
{
get { return BaseStream.Position; }
}
/// <summary>
/// Get the total length of the stream (ie. file size)
/// </summary>
public long Size
{
get { return BaseStream.Length; }
}
#endregion
#region Integer types
#region Signed
/// <summary>
/// Read a signed byte from the stream
/// </summary>
/// <returns></returns>
public sbyte ReadS1()
{
return ReadSByte();
}
#region Big-endian
/// <summary>
/// Read a signed short from the stream (big endian)
/// </summary>
/// <returns></returns>
public short ReadS2be()
{
return BitConverter.ToInt16(ReadBytesNormalisedBigEndian(2), 0);
}
/// <summary>
/// Read a signed int from the stream (big endian)
/// </summary>
/// <returns></returns>
public int ReadS4be()
{
return BitConverter.ToInt32(ReadBytesNormalisedBigEndian(4), 0);
}
/// <summary>
/// Read a signed long from the stream (big endian)
/// </summary>
/// <returns></returns>
public long ReadS8be()
{
return BitConverter.ToInt64(ReadBytesNormalisedBigEndian(8), 0);
}
#endregion
#region Little-endian
/// <summary>
/// Read a signed short from the stream (little endian)
/// </summary>
/// <returns></returns>
public short ReadS2le()
{
return BitConverter.ToInt16(ReadBytesNormalisedLittleEndian(2), 0);
}
/// <summary>
/// Read a signed int from the stream (little endian)
/// </summary>
/// <returns></returns>
public int ReadS4le()
{
return BitConverter.ToInt32(ReadBytesNormalisedLittleEndian(4), 0);
}
/// <summary>
/// Read a signed long from the stream (little endian)
/// </summary>
/// <returns></returns>
public long ReadS8le()
{
return BitConverter.ToInt64(ReadBytesNormalisedLittleEndian(8), 0);
}
#endregion
#endregion
#region Unsigned
/// <summary>
/// Read an unsigned byte from the stream
/// </summary>
/// <returns></returns>
public byte ReadU1()
{
return ReadByte();
}
#region Big-endian
/// <summary>
/// Read an unsigned short from the stream (big endian)
/// </summary>
/// <returns></returns>
public ushort ReadU2be()
{
return BitConverter.ToUInt16(ReadBytesNormalisedBigEndian(2), 0);
}
/// <summary>
/// Read an unsigned int from the stream (big endian)
/// </summary>
/// <returns></returns>
public uint ReadU4be()
{
return BitConverter.ToUInt32(ReadBytesNormalisedBigEndian(4), 0);
}
/// <summary>
/// Read an unsigned long from the stream (big endian)
/// </summary>
/// <returns></returns>
public ulong ReadU8be()
{
return BitConverter.ToUInt64(ReadBytesNormalisedBigEndian(8), 0);
}
#endregion
#region Little-endian
/// <summary>
/// Read an unsigned short from the stream (little endian)
/// </summary>
/// <returns></returns>
public ushort ReadU2le()
{
return BitConverter.ToUInt16(ReadBytesNormalisedLittleEndian(2), 0);
}
/// <summary>
/// Read an unsigned int from the stream (little endian)
/// </summary>
/// <returns></returns>
public uint ReadU4le()
{
return BitConverter.ToUInt32(ReadBytesNormalisedLittleEndian(4), 0);
}
/// <summary>
/// Read an unsigned long from the stream (little endian)
/// </summary>
/// <returns></returns>
public ulong ReadU8le()
{
return BitConverter.ToUInt64(ReadBytesNormalisedLittleEndian(8), 0);
}
#endregion
#endregion
#endregion
#region Floating point types
#region Big-endian
/// <summary>
/// Read a single-precision floating point value from the stream (big endian)
/// </summary>
/// <returns></returns>
public float ReadF4be()
{
return BitConverter.ToSingle(ReadBytesNormalisedBigEndian(4), 0);
}
/// <summary>
/// Read a double-precision floating point value from the stream (big endian)
/// </summary>
/// <returns></returns>
public double ReadF8be()
{
return BitConverter.ToDouble(ReadBytesNormalisedBigEndian(8), 0);
}
#endregion
#region Little-endian
/// <summary>
/// Read a single-precision floating point value from the stream (little endian)
/// </summary>
/// <returns></returns>
public float ReadF4le()
{
return BitConverter.ToSingle(ReadBytesNormalisedLittleEndian(4), 0);
}
/// <summary>
/// Read a double-precision floating point value from the stream (little endian)
/// </summary>
/// <returns></returns>
public double ReadF8le()
{
return BitConverter.ToDouble(ReadBytesNormalisedLittleEndian(8), 0);
}
#endregion
#endregion
#region Unaligned bit values
public void AlignToByte()
{
BitsLeft = 0;
Bits = 0;
}
/// <summary>
/// Read a n-bit integer in a big-endian manner from the stream
/// </summary>
/// <returns></returns>
public ulong ReadBitsIntBe(int n)
{
ulong res = 0;
int bitsNeeded = n - BitsLeft;
BitsLeft = -bitsNeeded & 7; // `-bitsNeeded mod 8`
if (bitsNeeded > 0)
{
// 1 bit => 1 byte
// 8 bits => 1 byte
// 9 bits => 2 bytes
int bytesNeeded = ((bitsNeeded - 1) / 8) + 1; // `ceil(bitsNeeded / 8)`
byte[] buf = ReadBytes(bytesNeeded);
for (int i = 0; i < bytesNeeded; i++)
{
res = res << 8 | buf[i];
}
ulong newBits = res;
res = res >> BitsLeft | Bits << bitsNeeded;
Bits = newBits; // will be masked at the end of the function
}
else
{
res = Bits >> -bitsNeeded; // shift unneeded bits out
}
ulong mask = (1UL << BitsLeft) - 1; // `BitsLeft` is in range 0..7, so `(1UL << 64)` does not have to be considered
Bits &= mask;
return res;
}
[Obsolete("use ReadBitsIntBe instead")]
public ulong ReadBitsInt(int n)
{
return ReadBitsIntBe(n);
}
/// <summary>
/// Read a n-bit integer in a little-endian manner from the stream
/// </summary>
/// <returns></returns>
public ulong ReadBitsIntLe(int n)
{
ulong res = 0;
int bitsNeeded = n - BitsLeft;
if (bitsNeeded > 0)
{
// 1 bit => 1 byte
// 8 bits => 1 byte
// 9 bits => 2 bytes
int bytesNeeded = ((bitsNeeded - 1) / 8) + 1; // `ceil(bitsNeeded / 8)`
byte[] buf = ReadBytes(bytesNeeded);
for (int i = 0; i < bytesNeeded; i++)
{
res |= ((ulong)buf[i]) << (i * 8);
}
// NB: in C#, bit shift operators on left-hand operand of type `ulong` work
// as if the right-hand operand were subjected to `& 63` (`& 0b11_1111`) (see
// https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/operators/bitwise-and-shift-operators#shift-count-of-the-shift-operators),
// so `res >> 64` is equivalent to `res >> 0` (but we don't want that)
ulong newBits = bitsNeeded < 64 ? res >> bitsNeeded : 0;
res = res << BitsLeft | Bits;
Bits = newBits;
}
else
{
res = Bits;
Bits >>= n;
}
BitsLeft = -bitsNeeded & 7; // `-bitsNeeded mod 8`
if (n < 64)
{
ulong mask = (1UL << n) - 1;
res &= mask;
}
// if `n == 64`, do nothing
return res;
}
#endregion
#region Byte arrays
/// <summary>
/// Read a fixed number of bytes from the stream
/// </summary>
/// <param name="count">The number of bytes to read</param>
/// <returns></returns>
public byte[] ReadBytes(long count)
{
if (count < 0 || count > Int32.MaxValue)
throw new ArgumentOutOfRangeException("requested " + count + " bytes, while only non-negative int32 amount of bytes possible");
byte[] bytes = base.ReadBytes((int) count);
if (bytes.Length < count)
throw new EndOfStreamException("requested " + count + " bytes, but got only " + bytes.Length + " bytes");
return bytes;
}
/// <summary>
/// Read a fixed number of bytes from the stream
/// </summary>
/// <param name="count">The number of bytes to read</param>
/// <returns></returns>
public byte[] ReadBytes(ulong count)
{
if (count > Int32.MaxValue)
throw new ArgumentOutOfRangeException("requested " + count + " bytes, while only non-negative int32 amount of bytes possible");
byte[] bytes = base.ReadBytes((int)count);
if (bytes.Length < (int)count)
throw new EndOfStreamException("requested " + count + " bytes, but got only " + bytes.Length + " bytes");
return bytes;
}
/// <summary>
/// Read bytes from the stream in little endian format and convert them to the endianness of the current platform
/// </summary>
/// <param name="count">The number of bytes to read</param>
/// <returns>An array of bytes that matches the endianness of the current platform</returns>
protected byte[] ReadBytesNormalisedLittleEndian(int count)
{
byte[] bytes = ReadBytes(count);
if (!IsLittleEndian) Array.Reverse(bytes);
return bytes;
}
/// <summary>
/// Read bytes from the stream in big endian format and convert them to the endianness of the current platform
/// </summary>
/// <param name="count">The number of bytes to read</param>
/// <returns>An array of bytes that matches the endianness of the current platform</returns>
protected byte[] ReadBytesNormalisedBigEndian(int count)
{
byte[] bytes = ReadBytes(count);
if (IsLittleEndian) Array.Reverse(bytes);
return bytes;
}
/// <summary>
/// Read all the remaining bytes from the stream until the end is reached
/// </summary>
/// <returns></returns>
public byte[] ReadBytesFull()
{
return ReadBytes(BaseStream.Length - BaseStream.Position);
}
/// <summary>
/// Read a terminated string from the stream
/// </summary>
/// <param name="term">The string terminator value</param>
/// <param name="includeTerm">True to include the terminator in the returned string</param>
/// <param name="consumeTerm">True to consume the terminator byte before returning</param>
/// <param name="eosError">True to throw an error when the EOS was reached before the terminator</param>
/// <returns></returns>
public byte[] ReadBytesTerm(byte term, bool includeTerm, bool consumeTerm, bool eosError)
{
// TODO: check if `System.IO.MemoryStream` would be a better choice than `List<byte>`
List<byte> bytes = new List<byte>();
while (true)
{
if (IsEof)
{
if (eosError) throw new EndOfStreamException(string.Format("End of stream reached, but no terminator `{0}` found", term));
break;
}
byte b = ReadByte();
if (b == term)
{
if (includeTerm) bytes.Add(b);
if (!consumeTerm) Seek(Pos - 1);
break;
}
bytes.Add(b);
}
return bytes.ToArray();
}
public byte[] ReadBytesTermMulti(byte[] term, bool includeTerm, bool consumeTerm, bool eosError)
{
int unitSize = term.Length;
// TODO: check if `System.IO.MemoryStream` would be a better choice than `List<byte>`
List<byte> bytes = new List<byte>();
while (true)
{
byte[] c = base.ReadBytes(unitSize);
if (c.Length < unitSize)
{
if (eosError) throw new EndOfStreamException(string.Format("End of stream reached, but no terminator `{0}` found", term));
bytes.AddRange(c);
break;
}
if (ByteArrayCompare(c, term) == 0)
{
if (includeTerm) bytes.AddRange(c);
if (!consumeTerm) Seek(Pos - unitSize);
break;
}
bytes.AddRange(c);
}
return bytes.ToArray();
}
/// <summary>
/// Read a specific set of bytes and assert that they are the same as an expected result
/// </summary>
/// <param name="expected">The expected result</param>
/// <returns></returns>
[Obsolete("use explicit \"if\" using ByteArrayCompare method instead")]
public byte[] EnsureFixedContents(byte[] expected)
{
byte[] bytes = ReadBytes(expected.Length);
if (bytes.Length != expected.Length)
{
throw new Exception(string.Format("Expected bytes: {0} ({1} bytes), Instead got: {2} ({3} bytes)", Convert.ToBase64String(expected), expected.Length, Convert.ToBase64String(bytes), bytes.Length));
}
for (int i = 0; i < bytes.Length; i++)
{
if (bytes[i] != expected[i])
{
throw new Exception(string.Format("Expected bytes: {0} ({1} bytes), Instead got: {2} ({3} bytes)", Convert.ToBase64String(expected), expected.Length, Convert.ToBase64String(bytes), bytes.Length));
}
}
return bytes;
}
public static byte[] BytesStripRight(byte[] src, byte padByte)
{
int newLen = src.Length;
while (newLen > 0 && src[newLen - 1] == padByte)
newLen--;
byte[] dst = new byte[newLen];
Array.Copy(src, dst, newLen);
return dst;
}
public static byte[] BytesTerminate(byte[] src, byte term, bool includeTerm)
{
int newLen = 0;
int maxLen = src.Length;
while (newLen < maxLen && src[newLen] != term)
newLen++;
if (includeTerm && newLen < maxLen)
newLen++;
byte[] dst = new byte[newLen];
Array.Copy(src, dst, newLen);
return dst;
}
public static byte[] BytesTerminateMulti(byte[] src, byte[] term, bool includeTerm)
{
int unitSize = term.Length;
if (unitSize == 0) {
return new byte[0];
}
int newLen = src.Length;
int iTerm = 0;
for (int iSrc = 0; iSrc < src.Length;) {
if (src[iSrc] != term[iTerm]) {
iSrc += unitSize - iTerm;
iTerm = 0;
continue;
}
iSrc++;
iTerm++;
if (iTerm == unitSize) {
newLen = iSrc - (includeTerm ? 0 : unitSize);
break;
}
}
byte[] dst = new byte[newLen];
Array.Copy(src, dst, newLen);
return dst;
}
#endregion
#region Byte array processing
/// <summary>
/// Performs XOR processing with given data, XORing every byte of the input with a single value.
/// </summary>
/// <param name="value">The data toe process</param>
/// <param name="key">The key value to XOR with</param>
/// <returns>Processed data</returns>
public byte[] ProcessXor(byte[] value, int key)
{
byte[] result = new byte[value.Length];
for (int i = 0; i < value.Length; i++)
{
result[i] = (byte)(value[i] ^ key);
}
return result;
}
/// <summary>
/// Performs XOR processing with given data, XORing every byte of the input with a key
/// array, repeating from the beginning of the key array if necessary
/// </summary>
/// <param name="value">The data toe process</param>
/// <param name="key">The key array to XOR with</param>
/// <returns>Processed data</returns>
public byte[] ProcessXor(byte[] value, byte[] key)
{
int keyLen = key.Length;
byte[] result = new byte[value.Length];
for (int i = 0, j = 0; i < value.Length; i++, j = (j + 1) % keyLen)
{
result[i] = (byte)(value[i] ^ key[j]);
}
return result;
}
/// <summary>
/// Performs a circular left rotation shift for a given buffer by a given amount of bits.
/// Pass a negative amount to rotate right.
/// </summary>
/// <param name="data">The data to rotate</param>
/// <param name="amount">The number of bytes to rotate by</param>
/// <param name="groupSize"></param>
/// <returns></returns>
public byte[] ProcessRotateLeft(byte[] data, int amount, int groupSize)
{
if (amount > 7 || amount < -7) throw new ArgumentException("Rotation of more than 7 cannot be performed.", "amount");
if (amount < 0) amount += 8; // Rotation of -2 is the same as rotation of +6
byte[] r = new byte[data.Length];
switch (groupSize)
{
case 1:
for (int i = 0; i < data.Length; i++)
{
byte bits = data[i];
// http://stackoverflow.com/a/812039
r[i] = (byte) ((bits << amount) | (bits >> (8 - amount)));
}
break;
default:
throw new NotImplementedException(string.Format("Unable to rotate a group of {0} bytes yet", groupSize));
}
return r;
}
/// <summary>
/// Inflates a deflated zlib byte stream
/// </summary>
/// <param name="data">The data to deflate</param>
/// <returns>The deflated result</returns>
public byte[] ProcessZlib(byte[] data)
{
// See RFC 1950 (https://tools.ietf.org/html/rfc1950)
// zlib adds a header to DEFLATE streams - usually 2 bytes,
// but can be 6 bytes if FDICT is set.
// There's also 4 checksum bytes at the end of the stream.
byte zlibCmf = data[0];
if ((zlibCmf & 0x0F) != 0x08) throw new NotSupportedException("Only the DEFLATE algorithm is supported for zlib data.");
const int zlibFooter = 4;
int zlibHeader = 2;
// If the FDICT bit (0x20) is 1, then the 4-byte dictionary is included in the header, we need to skip it
byte zlibFlg = data[1];
if ((zlibFlg & 0x20) == 0x20) zlibHeader += 4;
using (MemoryStream ms = new MemoryStream(data, zlibHeader, data.Length - (zlibHeader + zlibFooter)))
{
using (DeflateStream ds = new DeflateStream(ms, CompressionMode.Decompress))
{
using (MemoryStream target = new MemoryStream())
{
ds.CopyTo(target);
return target.ToArray();
}
}
}
}
#endregion
#region Misc utility methods
/// <summary>
/// Performs modulo operation between two integers.
/// </summary>
/// <remarks>
/// This method is required because C# lacks a "true" modulo
/// operator, the % operator rather being the "remainder"
/// operator. We want mod operations to always be positive.
/// </remarks>
/// <param name="a">The value to be divided</param>
/// <param name="b">The value to divide by. Must be greater than zero.</param>
/// <returns>The result of the modulo opertion. Will always be positive.</returns>
public static int Mod(int a, int b)
{
if (b <= 0) throw new ArgumentException("Divisor of mod operation must be greater than zero.", "b");
int r = a % b;
if (r < 0) r += b;
return r;
}
/// <summary>
/// Performs modulo operation between two integers.
/// </summary>
/// <remarks>
/// This method is required because C# lacks a "true" modulo
/// operator, the % operator rather being the "remainder"
/// operator. We want mod operations to always be positive.
/// </remarks>
/// <param name="a">The value to be divided</param>
/// <param name="b">The value to divide by. Must be greater than zero.</param>
/// <returns>The result of the modulo opertion. Will always be positive.</returns>
public static long Mod(long a, long b)
{
if (b <= 0) throw new ArgumentException("Divisor of mod operation must be greater than zero.", "b");
long r = a % b;
if (r < 0) r += b;
return r;
}
/// <summary>
/// Compares two byte arrays in lexicographical order.
/// </summary>
/// <returns>negative number if a is less than b, <c>0</c> if a is equal to b, positive number if a is greater than b.</returns>
/// <param name="a">First byte array to compare</param>
/// <param name="b">Second byte array to compare.</param>
public static int ByteArrayCompare(byte[] a, byte[] b)
{
if (a == b)
return 0;
int al = a.Length;
int bl = b.Length;
int minLen = al < bl ? al : bl;
for (int i = 0; i < minLen; i++) {
int cmp = a[i] - b[i];
if (cmp != 0)
return cmp;
}
// Reached the end of at least one of the arrays
if (al == bl) {
return 0;
} else {
return al - bl;
}
}
/// <summary>
/// Reverses the string, Unicode-aware.
/// </summary>
/// <a href="https://stackoverflow.com/a/15029493">taken from here</a>
public static string StringReverse(string s)
{
TextElementEnumerator enumerator = StringInfo.GetTextElementEnumerator(s);
List<string> elements = new List<string>();
while (enumerator.MoveNext())
elements.Add(enumerator.GetTextElement());
elements.Reverse();
return string.Concat(elements);
}
#endregion
}
}