Skip to content

Latest commit

 

History

History
168 lines (125 loc) · 6.25 KB

README.md

File metadata and controls

168 lines (125 loc) · 6.25 KB

daaja

This repository has implementations of data augmentation for NLP for Japanese:

For Japanese

README_ja.md is written in Japanese.

README_ja

This library about usage and performance is also described in the following article.

Install

pip install daaja

Example

Augmenters

Augmenters provides various types of data augmentation methods.

Sentence Augmenter

Sentence Augmenter is a data augmentation method for sentences.

Augmenter ref
RandamDeleteAugmentor [1]
RandamInsertAugmentor [1]
RandamSwapAugmentor [1]
SynonymReplacementAugmentor [1]
BackTranslationAugmentor [3]
ContextualAugmentor [4]

How to use

from daaja.augmentors.sentence import SynonymReplaceAugmentor
augmentor = SynonymReplaceAugmentor()
augmentor.augment("日本語でデータ拡張を行う") #=> 日本語でデータ伸暢を行う

Sequence Labeling Augmenter

Sequence Labeling Augmenter is a data augmentation method for sequence labeling task.

Augmenter ref
LabelwiseTokenReplacementAugmentor [2]
MentionReplacementAugmentor [2]
ShuffleWithinSegmentsAugmentor [2]
SynonymReplacementAugmentor [2]

How to use

from daaja.augmentors.sequence_labeling import SynonymReplacementAugmentor

augmentor.augment(["君", "は", "隆弘", "君", "かい"], ["O", "O", "B-PER", "O", "O"])
# => (['は', '君', '隆弘', '君', 'かい'], ['O', 'O', 'B-PER', 'O', 'O'])

Methods

The same method as in the following papers can be tried in methods.

Command
python -m daaja.methods.eda.run --input input.tsv --output data_augmentor.tsv

The format of input.tsv is as follows:

1	この映画はとてもおもしろい
0	つまらない映画だった
In Python
from daaja.methods.eda.easy_data_augmentor import EasyDataAugmentor
augmentor = EasyDataAugmentor(alpha_sr=0.1, alpha_ri=0.1, alpha_rs=0.1, p_rd=0.1, num_aug=4)
text = "日本語でデータ拡張を行う"
aug_texts = augmentor.augments(text)
print(aug_texts)
# ['日本語でを拡張データ行う', '日本語でデータ押広げるを行う', '日本語でデータ拡張を行う', '日本語で智見拡張を行う', '日本語でデータ拡張を行う']
Command
python -m daaja.methods.ner_sda.run --input input.tsv --output data_augmentor.tsv

The format of input.tsv is as follows:

	O
	O
田中	B-PER
	O
いい	O
ます	O
In Python
from daaja.methods.ner_sda.simple_data_augmentation_for_ner import \
    SimpleDataAugmentationforNER
tokens_list = [
    ["私", "は", "田中", "と", "いい", "ます"],
    ["筑波", "大学", "に", "所属", "して", "ます"],
    ["今日", "から", "筑波", "大学", "に", "通う"],
    ["茨城", "大学"],
]
labels_list = [
    ["O", "O", "B-PER", "O", "O", "O"],
    ["B-ORG", "I-ORG", "O", "O", "O", "O"],
    ["B-DATE", "O", "B-ORG", "I-ORG", "O", "O"],
    ["B-ORG", "I-ORG"],
]
augmentor = SimpleDataAugmentationforNER(tokens_list=tokens_list, labels_list=labels_list,
                                            p_power=1, p_lwtr=1, p_mr=1, p_sis=1, p_sr=1, num_aug=4)
tokens = ["吉田", "さん", "は", "株式", "会社", "A", "に", "出張", "予定", "だ"]
labels = ["B-PER", "O", "O", "B-ORG", "I-ORG", "I-ORG", "O", "O", "O", "O"]
augmented_tokens_list, augmented_labels_list = augmentor.augments(tokens, labels)
print(augmented_tokens_list)
# [['吉田', 'さん', 'は', '株式', '会社', 'A', 'に', '出張', '志す', 'だ'],
#  ['吉田', 'さん', 'は', '株式', '大学', '大学', 'に', '出張', '予定', 'だ'],
#  ['吉田', 'さん', 'は', '株式', '会社', 'A', 'に', '出張', '予定', 'だ'],
#  ['吉田', 'さん', 'は', '筑波', '大学', 'に', '出張', '予定', 'だ'],
#  ['吉田', 'さん', 'は', '株式', '会社', 'A', 'に', '出張', '予定', 'だ']]
print(augmented_labels_list)
# [['B-PER', 'O', 'O', 'B-ORG', 'I-ORG', 'I-ORG', 'O', 'O', 'O', 'O'],
#  ['B-PER', 'O', 'O', 'B-ORG', 'I-ORG', 'I-ORG', 'O', 'O', 'O', 'O'],
#  ['B-PER', 'O', 'O', 'B-ORG', 'I-ORG', 'I-ORG', 'O', 'O', 'O', 'O'],
#  ['B-PER', 'O', 'O', 'B-ORG', 'I-ORG', 'O', 'O', 'O', 'O'],
#  ['B-PER', 'O', 'O', 'B-ORG', 'I-ORG', 'I-ORG', 'O', 'O', 'O', 'O']]

Reference