-
Notifications
You must be signed in to change notification settings - Fork 0
/
A089840.pl
2817 lines (2321 loc) · 65.5 KB
/
A089840.pl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% %%
%% http://www.research.att.com/~njas/sequences/A089840p.txt %%
%% %%
%% A set of Prolog-definitions that illustrate how the first rows %%
%% of A089840 are produced. %%
%% %%
%% Written by Antti Karttunen, 2003, http://www.iki.fi/kartturi/ %%
%% %%
%% Last edited May 22, 2007 by AK. %%
%% %%
%% This works (at least) with GNU prolog version 1.2.16 %%
%% (Copyright (C) 1999-2002 Daniel Diaz) %%
%% see: http://www.gnu.org/software/prolog %%
%% %%
%% Load as: %%
%% consult('./A089840p.txt'). %%
%% then "execute" with: %%
%% findall([G|S],signatperm(G,64,S),GMs_with_their_sigperms). %%
%% or: findall([G|S],signatperm(G,196,S),GMs_with_their_sigperms). %%
%% %%
%% For the C-implementation of these same automorphisms, see: %%
%% from http://www.research.att.com/~njas/sequences/a089839.c.txt %%
%% %%
%% For the Scheme implementations, see: %%
%% http://www.iki.fi/kartturi/matikka/Nekomorphisms/gatomorf.htm %%
%% %%
%% If you have any suggestions or questions, you can mail them to me %%
%% to my address <My firstname>.<My surname>@gmail.com %%
%% %%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% Definitions:
%
% A "non-recursive Catalan automorphism" is such an automorphism of
% unlabeled rooted plane binary trees (see A014486) whose behaviour
% is always, no matter how large the tree is, determined by the
% information obtained from the finite set of nodes situated at
% constant, finite distances from the root.
% Note that the only information the nodes contain (being unlabeled)
% is whether they are leaves (terminal nodes) or whether they are
% "internal" nodes, branching to further subtrees to the left and/or
% to the right.
%
% Clause-representation of a non-recursive Catalan automorphism is a
% sequence of zero or more "clauses" followed by a default clause.
%
% Viewed combinatorially, a clause of n opening conses consists of
% a pair of rooted plane binary trees (both with n internal nodes),
% of which the other one is unlabeled, and the other one's terminal
% nodes are labeled. The sequence A089835(n) = (A000108(n)^2)*(n+1)!
% gives the number of such clauses.
%
% In this Prolog-implementation a "clause" is literally a Prolog clause
% (a.k.a. "rule") whose body is a conjunctive query of cons-clauses,
% defined below.
% The two-way "cons" is a clause which either "cleaves" open an existing
% cons cell (i.e. a branching node of the binary tree with its left and
% right sides), or constructs a new one, from the given left and right
% subtrees:
cons(CAR,CDR,[CAR|CDR]).
% That is: if the first and the second argument are instantiated,
% constructs a new cons cell (to be placed to the third,
% uninstantiated argument), with CAR as its left subtree,
% and CDR as its right subtree.
% If the first and the second argument are uninstantiated,
% but the third one is instantiated, then obtain its
% left side (CAR) and its right side (CDR), and place
% them to the first and second arguments.
% Examples of simple non-recursive automorphisms follow.
% From each (after the trivial identity permutation gma001477)
% we list its
% defining CLAUSE-sequence structure
% from http://www.research.att.com/~njas/sequences/a089839.c.txt
%
% its effects on Lisp/Scheme dotted-pairs,
%
% and on the rooted plane binary trees illustrated with simple ASCII art,
%
% and its defining Prolog-clause definition, with deliberate use of red cuts.
% The "opening" conses are given above the % -- comment line,
% and the "closing" ones below it.
%
% Each Prolog-definition ends with the "catch-all" default clause
% of the form gmaxxxxx(X,X). which will fix all those S-expressions
% which were not handled by any previous clauses (i.e. those above it).
% The four numbers for each non-default clause in clause sequences
% refer to the size of the tree (number of internal nodes opened (closed)),
% the local rank of the source tree,
% the local rank of the destination tree,
% the rank of the permutation used in the labels of destination tree.
% The ranks of source and destination trees employ the standard
% lexicographic ranking order as employed in the OEIS entry A014486.
% For permutations we use the unranking/ranking system as illustrated
% by the entry A060118 in OEIS, which works like this:
% (permute-a060118 (vector 'a 'b 'c) 3 0) --> #(a b c)
% (permute-a060118 (vector 'a 'b 'c) 3 1) --> #(b a c)
% (permute-a060118 (vector 'a 'b 'c) 3 2) --> #(a c b)
% (permute-a060118 (vector 'a 'b 'c) 3 3) --> #(b c a)
% (permute-a060118 (vector 'a 'b 'c) 3 4) --> #(c b a)
% (permute-a060118 (vector 'a 'b 'c) 3 5) --> #(c a b)
% See also: http://www.iki.fi/~kartturi/matikka/Nekomorphisms/gatogenp.scm
% For each non-recursive Catalan automorphism there exists
% the unique minimal clause-representation, which from all
% the possible clause-representations of that automorphism
% is the "least" clause sequence, where the total order
% of clause sequences is defined by the following rules:
%
% A) All the clause sequences have an associated integer
% (see the macro CLAUSESEQ_binexp in a089839.c.txt), whose
% binary expansion's run lengths determine the number of
% clauses and their sizes.
% Of two clause sequences with differing values for this
% integer, the one with smaller value, is also "less than"
% in this context. The run lenghs of the least significant
% end of the binary expansion correspond to the sizes of
% the most significant clauses, and vice versa.
%
% E.g. from 103, whose binary expansion is 1100111
% we get clauses of sizes 3, 2 and 2, from the most
% significant to the least signicant clause.
% Similarly, from 124, whose binary expansion is 1111100,
% we get two clauses, the more significant, with
% binary trees of 2 internal nodes, and the less
% significant, with binary trees of 5 internal nodes.
%
% B) The "most distinguishing clause" of a clause sequence
% in relation to the other clause sequence of the same
% size, is the most significant clause, which differs from
% the corresponding clause in the other clause sequence.
% Here the most significant clause means the clause which is
% executed first, the least significant being the one which
% is applied last, before the default identity clause,
% in case none of the previous, "more significant" clauses
% matched. If there is no such dinstinguishing clause,
% then the two clause sequences are identical.
%
% C) If the above conditions cannot determine the relation
% of two clause sequences (in this total order)
% then the "lesser" clause sequence is the one where the
% source binary tree used in the most distinguishing clause
% is nearer to the beginning of the sequence A014486.
% (I.e. lexicographically less as determined by the
% established ordering of unlabeled rooted plane binary trees).
%
% D) If the above conditions cannot determine the relation
% of two clause sequences in this total order
% then the "lesser" clause sequence is the one where the
% destination binary tree of the most distinguishing clause
% is lexicographically "less", as determined by the sequence A014486.
%
% E) If the above conditions cannot determine the relation
% of two clause sequences in this total order
% then the "lesser" clause sequence is the one where the
% the permutation used in the destination binary tree
% of the most distinguishing clause is the least one as
% ordered by the sequence A060118.
% (Note that this differs from the established "lexicographic"
% orderings of permutations, like used in A030299 and A055089).
%
% The Prolog-definitions here try to give the minimal clause-representations,
% with non-minimal representations indicated with the letter 'b'
% (such as gma089864b for the automorphism *A089864.)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% %%
%% One non-recursive automorphism with 0 non-default clauses %%
%% and 0 opening (closing) conses. %%
%% %%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% CLAUSE gmA001477[] = { CLAUSESEQ_begin(0,0) }; /* A089840[0] */
gma001477(X,X). %% Only the default clause, the Identity which fixes everything.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% %%
%% One non-recursive automorphism with 1 non-default clause of %%
%% 1 opening (closing) cons: %%
%% %%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% CLAUSE gmA069770[] = { CLAUSESEQ_begin(1,1), { 1, 0, 0, 1 } };/*A089840[1] */
% (a . b) --> (b . a)
%
% A B --> B A
% \ / \ /
% X0 Y0
gma069770(X0,Y0) :-
cons(A,B,X0),
% --
cons(B,A,Y0),
!.
gma069770(X,X). %% The default clause, fix S-exprs (here just []) the above clause could not handle.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% %%
%% 10 non-recursive automorphisms with one non-default clause of %%
%% two opening (closing) conses: %%
%% %%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% CLAUSE gmA072796[] = { CLAUSESEQ_begin(3,1), { 2, 0, 0, 1 } };/* A089840[2] */
% (a . (b . c)) --> (b . (a . c))
%
% B C A C
% \ / \ /
% A X1 --> B Y1
% \ / \ /
% X0 Y0
gma072796(X0,Y0) :-
cons(A,X1,X0),
cons(B,C,X1),
% --
cons(A,C,Y1),
cons(B,Y1,Y0),
!.
gma072796(X,X). %% Fix [] and S-exprs of length 1.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% CLAUSE gmA089850[] = { CLAUSESEQ_begin(3,1), { 2, 0, 0, 2 } };/*A089840[3] */
% (a . (b . c)) --> (a . (c . b))
%
% B C C B
% \ / \ /
% A X1 --> A Y1
% \ / \ /
% X0 Y0
gma089850(X0,Y0) :-
cons(A,X1,X0),
cons(B,C,X1),
% --
cons(C,B,Y1),
cons(A,Y1,Y0),
!.
gma089850(X,X).
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% CLAUSE gmA089851[] = { CLAUSESEQ_begin(3,1), { 2, 0, 0, 3 } };/* A089840[4] */
%
% B C C A
% \ / \ /
% A X1 --> B Y1
% \ / \ /
% X0 Y0
gma089851(X0,Y0) :-
cons(A,X1,X0),
cons(B,C,X1),
% --
cons(C,A,Y1),
cons(B,Y1,Y0),
!.
gma089851(X,X).
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% CLAUSE gmA089852[] = { CLAUSESEQ_begin(3,1), { 2, 0, 0, 4 } };/* A089840[5] */
%
% B C B A
% \ / \ /
% A X1 --> C Y1
% \ / \ /
% X0 Y0
gma089852(X0,Y0) :-
cons(A,X1,X0),
cons(B,C,X1),
% --
cons(B,A,Y1),
cons(C,Y1,Y0),
!.
gma089852(X,X).
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% CLAUSE gmA089853[] = { CLAUSESEQ_begin(3,1), { 2, 0, 0, 5 } };/* A089840[6] */
% (a . (b . c)) --> (c . (a . b))
%
% B C A B
% \ / \ /
% A X1 --> C Y1
% \ / \ /
% X0 Y0
gma089853(X0,Y0) :-
cons(A,X1,X0),
cons(B,C,X1),
% --
cons(A,B,Y1),
cons(C,Y1,Y0),
!.
gma089853(X,X).
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% CLAUSE gmA089854[] = { CLAUSESEQ_begin(3,1), { 2, 1, 1, 1 } };/* A089840[7] */
% ((a . b) . c) --> ((b . a) . c)
%
%
% A B B A
% \ / \ /
% X1 C --> Y1 C
% \ / \ /
% X0 Y0
gma089854(X0,Y0) :-
cons(X1,C,X0),
cons(A,B,X1),
% --
cons(B,A,Y1),
cons(Y1,C,Y0),
!.
gma089854(X,X).
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% CLAUSE gmA072797[] = { CLAUSESEQ_begin(3,1), { 2, 1, 1, 2 } };/* A089840[8] */
% ((a . b) . c) --> ((a . c) . b)
%
%
% A B A C
% \ / \ /
% X1 C --> Y1 B
% \ / \ /
% X0 Y0
gma072797(X0,Y0) :-
cons(X1,C,X0),
cons(A,B,X1),
% --
cons(A,C,Y1),
cons(Y1,B,Y0),
!.
gma072797(X,X).
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% CLAUSE gmA089855[] = { CLAUSESEQ_begin(3,1), { 2, 1, 1, 3 } };/* A089840[9] */
% ((a . b) . c) --> ((b . c) . a)
%
%
% A B B C
% \ / \ /
% X1 C --> Y1 A
% \ / \ /
% X0 Y0
gma089855(X0,Y0) :-
cons(X1,C,X0),
cons(A,B,X1),
% --
cons(B,C,Y1),
cons(Y1,A,Y0),
!.
gma089855(X,X).
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% CLAUSE gmA089856[] = { CLAUSESEQ_begin(3,1), { 2, 1, 1, 4 } };/* A089840[10] */
% ((a . b) . c) --> ((c . b) . a)
%
% A B C B
% \ / \ /
% X1 C --> Y1 A
% \ / \ /
% X0 Y0
gma089856(X0,Y0) :-
cons(X1,C,X0),
cons(A,B,X1),
% --
cons(C,B,Y1),
cons(Y1,A,Y0),
!.
gma089856(X,X).
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% CLAUSE gmA089857[] = { CLAUSESEQ_begin(3,1), { 2, 1, 1, 5 } };/* A089840[11] */
% ((a . b) . c) --> ((c . a) . b)
%
% A B C A
% \ / \ /
% X1 C --> Y1 B
% \ / \ /
% X0 Y0
gma089857(X0,Y0) :-
cons(X1,C,X0),
cons(A,B,X1),
% --
cons(C,A,Y1),
cons(Y1,B,Y0),
!.
gma089857(X,X).
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% %%
%% 10 Non-recursive automorphisms with two non-default clauses %%
%% of 2 & 1 opening (closing) conses. %%
%% %%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% CLAUSE gmA074679[] = { CLAUSESEQ_begin(4,2), { 2, 0, 1, 0,}, { 1,0, 0, 1 } }; /* A089840[12] */
% (a . (b . c)) --> ((a . b) . c)
% (a . ()) --> (() . a)
%
% B C A B
% \ / \ /
% A X1 --> Y1 C A [] --> [] A
% \ / \ / \ / \ /
% X0 Y0 X0 Y0
gma074679(X0,Y0) :-
cons(A,X1,X0),
cons(B,C,X1),
% --
cons(A,B,Y1),
cons(Y1,C,Y0),
!.
gma074679(X0,Y0) :-
cons(A,B,X0), % B = [] by above clause.
% --
cons(B,A,Y0),
!.
gma074679(X,X).
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% CLAUSE gmA089858[] = { CLAUSESEQ_begin(4,2), { 2, 0, 1, 1,}, { 1, 0,0, 1 } }; /* A089840[13] */
% (a . (b . c)) --> ((b . a) . c)
% (a . ()) --> (() . a)
%
% B C B A
% \ / \ /
% A X1 --> Y1 C A [] --> [] A
% \ / \ / \ / \ /
% X0 Y0 X0 Y0
gma089858(X0,Y0) :-
cons(A,X1,X0),
cons(B,C,X1),
% --
cons(B,A,Y1),
cons(Y1,C,Y0),
!.
gma089858(X0,Y0) :-
cons(A,B,X0), % B = [] by above clause.
% --
cons(B,A,Y0),
!.
gma089858(X,X).
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% CLAUSE gmA073269[] = { CLAUSESEQ_begin(4,2), { 2, 0, 1, 2,}, { 1, 0,0, 1 } }; /* A089840[14] */
% (a . (b . c)) --> ((a . c) . b)
% (a . ()) --> (() . a)
%
% B C A C
% \ / \ /
% A X1 --> Y1 B A [] --> [] A
% \ / \ / \ / \ /
% X0 Y0 X0 Y0
gma073269(X0,Y0) :-
cons(A,X1,X0),
cons(B,C,X1),
% --
cons(A,C,Y1),
cons(Y1,B,Y0),
!.
gma073269(X0,Y0) :-
cons(A,B,X0),
% --
cons(B,A,Y0),
!.
gma073269(X,X).
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% CLAUSE gmA089859[] = { CLAUSESEQ_begin(4,2), { 2, 0, 1, 4,}, { 1, 0,0, 1 } }; /* A089840[15] */
% (a . (b . c)) --> ((c . b) . a)
% (a . ()) --> (() . a)
%
% B C C B
% \ / \ /
% A X1 --> Y1 A A [] --> [] A
% \ / \ / \ / \ /
% X0 Y0 X0 Y0
gma089859(X0,Y0) :-
cons(A,X1,X0),
cons(B,C,X1),
% --
cons(C,B,Y1),
cons(Y1,A,Y0),
!.
gma089859(X0,Y0) :-
cons(A,B,X0),
% --
cons(B,A,Y0),
!.
gma089859(X,X).
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% CLAUSE gmA089860[] = { CLAUSESEQ_begin(4,2), { 2, 0, 1, 5,}, { 1, 0,0, 1 } }; /* A089840[16] */
% (a . (b . c)) --> ((c . a) . b)
% (a . ()) --> (() . a)
%
% B C C A
% \ / \ /
% A X1 --> Y1 B A [] --> [] A
% \ / \ / \ / \ /
% X0 Y0 X0 Y0
gma089860(X0,Y0) :-
cons(A,X1,X0),
cons(B,C,X1),
% --
cons(C,A,Y1),
cons(Y1,B,Y0),
!.
gma089860(X0,Y0) :-
cons(A,B,X0),
% --
cons(B,A,Y0),
!.
gma089860(X,X).
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% CLAUSE gmA074680[] = { CLAUSESEQ_begin(4,2), { 2, 1, 0, 0 }, { 1, 0,0, 1 } }; /* A089840[17] */
% ((a . b) . c) --> (a . (b . c))
% (() . b) --> (b . ())
%
% A B B C
% \ / \ /
% X1 C --> A Y1 [] B --> B []
% \ / \ / \ / \ /
% X0 Y0 X0 Y0
gma074680(X0,Y0) :-
cons(X1,C,X0),
cons(A,B,X1),
% --
cons(B,C,Y1),
cons(A,Y1,Y0),
!.
gma074680(X0,Y0) :-
cons(A,B,X0), % A = [] by above clause.
% --
cons(B,A,Y0),
!.
gma074680(X,X).
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% CLAUSE gmA089861[] = { CLAUSESEQ_begin(4,2), { 2, 1, 0, 1,}, { 1, 0,0, 1 } }; /* A089840[18] */
% ((a . b) . c) --> (b . (a . c))
% (() . b) --> (b . ())
%
% A B A C
% \ / \ /
% X1 C --> B Y1 [] B --> B []
% \ / \ / \ / \ /
% X0 Y0 X0 Y0
gma089861(X0,Y0) :-
cons(X1,C,X0),
cons(A,B,X1),
% --
cons(A,C,Y1),
cons(B,Y1,Y0),
!.
gma089861(X0,Y0) :-
cons(A,B,X0),
% --
cons(B,A,Y0),
!.
gma089861(X,X).
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% CLAUSE gmA073270[] = { CLAUSESEQ_begin(4,2), { 2, 1, 0, 2,}, { 1, 0,0, 1 } }; /* A089840[19] */
% ((a . b) . c) --> (a . (c . b))
% (() . b) --> (b . ())
%
% A B C B
% \ / \ /
% X1 C --> A Y1 [] B --> B []
% \ / \ / \ / \ /
% X0 Y0 X0 Y0
gma073270(X0,Y0) :-
cons(X1,C,X0),
cons(A,B,X1),
% --
cons(C,B,Y1),
cons(A,Y1,Y0),
!.
gma073270(X0,Y0) :-
cons(A,B,X0),
% --
cons(B,A,Y0),
!.
gma073270(X,X).
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% CLAUSE gmA089862[] = { CLAUSESEQ_begin(4,2), { 2, 1, 0, 3,}, { 1, 0,0, 1 } }; /* A089840[20] */
% ((a . b) . c) --> (b . (c . a))
% (() . b) --> (b . ())
%
% A B C A
% \ / \ /
% X1 C --> B Y1 [] B --> B []
% \ / \ / \ / \ /
% X0 Y0 X0 Y0
gma089862(X0,Y0) :-
cons(X1,C,X0),
cons(A,B,X1),
% --
cons(C,A,Y1),
cons(B,Y1,Y0),
!.
gma089862(X0,Y0) :-
cons(A,B,X0),
% --
cons(B,A,Y0),
!.
gma089862(X,X).
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% CLAUSE gmA089863[] = { CLAUSESEQ_begin(4,2), { 2, 1, 0, 4,}, { 1, 0, 0, 1 } }; /* A089840[21] */
% ((a . b) . c) --> (c . (b . a))
% (() . b) --> (b . ())
%
% A B B A
% \ / \ /
% X1 C --> C Y1 [] B --> B []
% \ / \ / \ / \ /
% X0 Y0 X0 Y0
gma089863(X0,Y0) :-
cons(X1,C,X0),
cons(A,B,X1),
% --
cons(B,A,Y1),
cons(C,Y1,Y0),
!.
gma089863(X0,Y0) :-
cons(A,B,X0),
% --
cons(B,A,Y0),
!.
gma089863(X,X).
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Note that the { CLAUSESEQ_begin(4,2), { 2, 0, 1, 3,}, { 1, 0,0, 1 } };
% is not used here, as it would result a duplicate of gma069770:
%
% (a . (b . c)) --> ((b . c) . a)
% (a . ()) --> (() . a)
%
% B C B C
% \ / \ /
% A X1 --> Y1 A A [] --> [] A
% \ / \ / \ / \ /
% X0 Y0 X0 Y0
% Similarly for { CLAUSESEQ_begin(4,2), { 2, 1, 0, 5,}, { 1, 0, 0, 1 } };
% ((a . b) . c) --> (c . (a . b))
% (() . b) --> (b . ())
%
% A B A B
% \ / \ /
% X1 C --> C Y1 [] B --> B []
% \ / \ / \ / \ /
% X0 Y0 X0 Y0
%
% which also is a duplicate of a simple swap (gma069770).
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% %%
%% Five examples out of 139 non-recursive automorphisms with %%
%% two non-default clauses with total 4 opening (closing) conses. %%
%% %%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% CLAUSE gmA129611[] = { CLAUSESEQ_begin(8,2), { 3, 1, 4, 10,}, { 1, 0, 0, 1 } }; /* A089840[169] */
% (a . ((b . c) . d)) --> (((c . b) . d) . a)
% (a . b) --> (b . a) [b implied () or (() . X)]
% B C C B
% \ / \ /
% X2 D Y2 D
% \ / \ /
% A X1 --> Y1 A A B --> B A
% \ / \ / \ / \ /
% X0 Y0 X0 Y0
%
%
gma129611(X0,Y0) :-
cons(A,X1,X0),
cons(X2,D,X1),
cons(B,C,X2),
% --
cons(C,B,Y2),
cons(Y2,D,Y1),
cons(Y1,A,Y0),
!.
gma129611(X0,Y0) :-
cons(A,B,X0),
% --
cons(B,A,Y0),
!.
gma129611(X,X).
%% CLAUSE gmA129612[] = { CLAUSESEQ_begin(8,2), { 3, 4, 1, 22,}, { 1, 0, 0, 1 } }; /* A089840[251] */
% (((a . b) . c) . d) --> (d . ((b . a) . c))
% (a . b) --> (b . a) [a implied () or (() . X)]
% This involution effects the following transformation:
% A B B A
% \ / \ /
% X2 C Y2 C
% \ / \ /
% X1 D --> D Y1 A B --> B A
% \ / \ / \ / \ /
% X0 Y0 X0 Y0
%
gma129612(X0,Y0) :-
cons(X1,D,X0),
cons(X2,C,X1),
cons(A,B,X2),
% --
cons(B,A,Y2),
cons(Y2,C,Y1),
cons(D,Y1,Y0),
!.
gma129612(X0,Y0) :-
cons(A,B,X0),
% --
cons(B,A,Y0),
!.
gma129612(X,X).
%% CLAUSE gmA123503[] = { CLAUSESEQ_begin(12,2), { 2, 0, 0, 1,}, { 2, 1, 1, 1 } }; /* A089840[253] */
% (a . (b . c)) --> (b . (a . c))
% ((a . b) . c) --> ((b . a) . c)
%
% B C A C A B B A
% \ / \ / \ / \ /
% A X1 --> B Y1 X1 [] --> Y1 []
% \ / \ / \ / \ /
% X0 Y0 X0 Y0
gma123503(X0,Y0) :-
cons(A,X1,X0),
cons(B,C,X1),
% --
cons(A,C,Y1),
cons(B,Y1,Y0),
!.
gma123503(X0,Y0) :-
cons(X1,C,X0),
cons(A,B,X1),
% --
cons(B,A,Y1),
cons(Y1,C,Y0),
!.
gma123503(X,X).
%% CLAUSE gmA123499[] = { CLAUSESEQ_begin(12,2), { 2, 0, 1, 0,}, { 2, 1, 0, 4 } }; /* A089840[258] */
% (a . (b . c)) --> ((a . b) . c)
% ((a . b) . c) --> (c . (b . a))
%
% B C A B A B B A
% \ / \ / \ / \ /
% A X1 --> Y1 C X1 [] --> [] Y1
% \ / \ / \ / \ /
% X0 Y0 X0 Y0
gma123499(X0,Y0) :-
cons(A,X1,X0),
cons(B,C,X1),
% --
cons(A,B,Y1),
cons(Y1,C,Y0),
!.
gma123499(X0,Y0) :-
cons(X1,C,X0),
cons(A,B,X1),
% --
cons(B,A,Y1),
cons(C,Y1,Y0),
!.
gma123499(X,X).
%% CLAUSE gmA123500[] = { CLAUSESEQ_begin(12,2), { 2, 1, 0, 0,}, { 2, 0, 1, 4 } }; /* A089840[264] */
% ((a . b) . c) --> (a . (b . c))
% (a . (b . c)) --> ((c . b) . a)
%
% A B B C B C C B
% \ / \ / \ / \ /
% X1 C --> A Y1 [] X1 --> Y1 []
% \ / \ / \ / \ /
% X0 Y0 X0 Y0
gma123500(X0,Y0) :-
cons(X1,C,X0),
cons(A,B,X1),
% --
cons(B,C,Y1),
cons(A,Y1,Y0),
!.
gma123500(X0,Y0) :-
cons(A,X1,X0),
cons(B,C,X1),
% --
cons(C,B,Y1),
cons(Y1,A,Y0),
!.
gma123500(X,X).
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% %%
%% Seven examples out of 2570 non-recursive automorphisms with %%
%% two non-default clauses of total 5 opening (closing) conses. %%
%% %%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% All the examples have 3 opening (closing) conses in the first
%% clause, and 2 opening (closing) conses in the second.
% CLAUSE gmA129607[] = { CLAUSESEQ_begin(24,2), { 3, 0, 0, 0,}, { 2, 0, 0, 1 } }; /* A089840[3608] */
% (a . (b . (c . d))) --> (a . (b . (c . d)))
% (a . (b . c)) --> (b . (a . c)) [c implied ()]
%
% C D C D
% \ / \ /
% B X2 B Y2 B C A C
% \ / \ / \ / \ /
% A X1 --> A Y1 A X1 --> B Y1 (C is [])
% \ / \ / \ / \ /
% X0 Y0 X0 Y0
gma129607(X0,Y0) :-
cons(A,X1,X0),
cons(B,X2,X1),
cons(C,D,X2),
% --
cons(C,D,Y2),
cons(B,Y2,Y1),
cons(A,Y1,Y0),
!.
% Above clause implies that C=[].
gma129607(X0,Y0) :-
cons(A,X1,X0),
cons(B,C,X1),
% --
cons(A,C,Y1),
cons(B,Y1,Y0),
!.
gma129607(X,X). %% Fix the rest, i.e. S-exprs of the form (a . ()) and ()
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% CLAUSE gmA129605[] = { CLAUSESEQ_begin(24,2), { 3, 0, 0, 3,}, { 2, 0, 0, 1 } }; /* A089840[3613] */
% (a . (b . (c . d))) --> (b . (c . (a . d)))
% (a . (b . c)) --> (b . (a . c)) [c implied ()]
%
% C D A D
% \ / \ /
% B X2 C Y2 B C A C
% \ / \ / \ / \ /