diff --git a/src/skelcast/models/diffusers/__init__.py b/src/skelcast/models/diffusers/__init__.py new file mode 100644 index 0000000..2226456 --- /dev/null +++ b/src/skelcast/models/diffusers/__init__.py @@ -0,0 +1 @@ +from .embedding import DiffusionEmbedding \ No newline at end of file diff --git a/src/skelcast/models/diffusers/embedding.py b/src/skelcast/models/diffusers/embedding.py new file mode 100644 index 0000000..9d1345a --- /dev/null +++ b/src/skelcast/models/diffusers/embedding.py @@ -0,0 +1,58 @@ +import math + +import torch +import torch.nn as nn +import torch.nn.functional as F + + +class DiffusionEmbedding(nn.Module): + def __init__(self, num_steps, embedding_dim=128, projection_dim=None): + # Codes from CSDI + super().__init__() + if projection_dim is None: + projection_dim = embedding_dim + self.register_buffer( + "embedding", + self._build_embedding(num_steps, embedding_dim / 2), + persistent=False, + ) + self.projection1 = nn.Linear(embedding_dim, projection_dim) + self.projection2 = nn.Linear(projection_dim, projection_dim) + + def forward(self, diffusion_step): + x = self.embedding[diffusion_step] + x = self.projection1(x) + x = F.silu(x) + x = self.projection2(x) + x = F.silu(x) + return x + + def _build_embedding(self, num_steps, dim=64): + steps = torch.arange(num_steps).unsqueeze(1) # (T,1) + frequencies = 10.0 ** (torch.arange(dim) / (dim - 1) * 4.0).unsqueeze( + 0 + ) # (1,dim) + table = steps * frequencies # (T,dim) + table = torch.cat([torch.sin(table), torch.cos(table)], dim=1) # (T,dim*2) + return table + + +class PositionalEncoding(nn.Module): + def __init__(self, d_model: int, dropout: float = 0.1, max_len: int = 5000): + super().__init__() + self.dropout = nn.Dropout(p=dropout) + + position = torch.arange(max_len).unsqueeze(1) + div_term = torch.exp(torch.arange(0, d_model, 2) * (-math.log(10000.0) / d_model)) + pe = torch.zeros(max_len, 1, d_model) + pe[:, 0, 0::2] = torch.sin(position * div_term) + pe[:, 0, 1::2] = torch.cos(position * div_term) + self.register_buffer('pe', pe) + + def forward(self, x): + """ + Args: + x: Tensor, shape [seq_len, batch_size, embedding_dim] + """ + x = x + self.pe[:x.size(0)] + return self.dropout(x) diff --git a/src/skelcast/models/diffusers/series_diffuser.py b/src/skelcast/models/diffusers/series_diffuser.py new file mode 100644 index 0000000..4ae60bd --- /dev/null +++ b/src/skelcast/models/diffusers/series_diffuser.py @@ -0,0 +1,51 @@ +import torch +import torch.nn as nn + +from skelcast.models.diffusers.embedding import DiffusionEmbedding, PositionalEncoding + + +class Series_Denoiser(nn.Module): + def __init__(self, input_dim, qkv_dim, num_layers, num_heads, prefix_len, pred_len, diff_steps): + super().__init__() + + self.input_dim = input_dim + self.qkv_dim = qkv_dim + self.num_layers = num_layers + self.num_heads = num_heads + self.prefix_len = prefix_len + self.pred_len = pred_len + self.diff_steps = diff_steps + + self.spatial_layer = nn.TransformerEncoderLayer(d_model=qkv_dim, nhead=num_heads, + dim_feedforward=qkv_dim, activation='gelu') + self.spatial_TF = nn.TransformerEncoder(self.spatial_layer, num_layers=num_layers) + self.spatial_inp_fc = nn.Linear(prefix_len+pred_len, qkv_dim) + self.spatial_out_fc = nn.Linear(qkv_dim, prefix_len+pred_len) + + self.temporal_layer = nn.TransformerEncoderLayer(d_model=qkv_dim, nhead=num_heads, + dim_feedforward=qkv_dim, activation='gelu') + self.temporal_TF = nn.TransformerEncoder(self.temporal_layer, num_layers=num_layers) + self.temporal_inp_fc = nn.Linear(input_dim, qkv_dim) + self.temporal_out_fc = nn.Linear(qkv_dim, input_dim) + + self.pos_encoder = PositionalEncoding(qkv_dim) + + self.step_temporal_encoder = DiffusionEmbedding(diff_steps, qkv_dim) + self.step_spatial_encoder = DiffusionEmbedding(diff_steps, qkv_dim) + + def forward(self, noise, x, t): + step_spatial_embed = self.step_spatial_encoder(t) + step_temporal_embed = self.step_temporal_encoder(t) + window = torch.cat([x, noise], dim=0) + + spatial = self.spatial_inp_fc(window.permute(2, 1, 0)) + step_spatial_embed # L B D -> D B L + spatial = self.pos_encoder(spatial) + spatial = self.spatial_TF(spatial) + spatial = self.spatial_out_fc(spatial).permute(2, 1, 0) + + temporal = self.temporal_inp_fc(spatial) + step_temporal_embed + temporal = self.pos_encoder(temporal) + temporal = self.temporal_TF(temporal) + temporal = self.temporal_out_fc(temporal) + + return temporal[x.shape[0]:] \ No newline at end of file