Skip to content

kayarre/pysegbase

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

About

Segmentation tools based on the graph cut algorithm. You can see video to get an idea.

Graph-Cut segmentation

please cite:

@INPROCEEDINGS{jirik2013,
    author = {Jirik, M. and Lukes, V. and Svobodova, M. and Zelezny, M.},
    title = {Image Segmentation in Medical Imaging via Graph-Cuts.},
    year = {2013},
    journal = {11th International Conference on Pattern Recognition and Image Analysis: New Information Technologies (PRIA-11-2013). Samara, Conference Proceedings },
    url = {http://www.kky.zcu.cz/en/publications/JirikMmjirik_2013_ImageSegmentationin},
}

Links

https://github.com/mjirik/pysegbase

Authors

  • Miroslav Jirik
  • Vladimir Lukes

License

New BSD License, see the LICENSE file.

Install

pip install gcopython pysegbase

See INSTALL file for more information

Run

Create output.mat file:

python pysegbase/dcmreaddata.py -i directoryWithDicomFiles --degrad 4

See data:

python pysegbase/seed_editor_qt.py -f output.mat

Make graph_cut:

python pysegbase/pycut.py -i output.mat

Use is as a library:

import numpy as np
import pysegbase.pycut as pspc

data = np.random.rand(30, 30, 30)
data[10:20, 5:15, 3:13] += 1
data = data * 30
data = data.astype(np.int16)
igc = pspc.ImageGraphCut(data, voxelsize=[1, 1, 1])
seeds = igc.interactivity()

pysegbase_screenshot

More complex example without interactivity

import numpy as np
import pysegbase.pycut as pspc
import matplotlib.pyplot as plt

# create data
data = np.random.rand(30, 30, 30)
data[10:20, 5:15, 3:13] += 1
data = data * 30
data = data.astype(np.int16)

# Make seeds
seeds = np.zeros([30,30,30])
seeds[13:17, 7:10, 5:11] = 1
seeds[0:5:, 0:10, 0:11] = 2

# Run 
igc = pspc.ImageGraphCut(data, voxelsize=[1, 1, 1])
igc.set_seeds(seeds)
igc.run()

# Show results
colormap = plt.cm.get_cmap('brg')
colormap._init()
colormap._lut[:1:,3]=0

plt.imshow(data[:, :, 10], cmap='gray') 
plt.contour(igc.segmentation[:, :,10], levels=[0.5])
plt.imshow(igc.seeds[:, :, 10], cmap=colormap, interpolation='none')
plt.show()

example_img

Configuration

    segparams = {
        # 'method':'graphcut',
        'method': 'graphcut',
        'use_boundary_penalties': False,
        'boundary_dilatation_distance': 2,
        'boundary_penalties_weight': 1,
        'modelparams': {
            'type': 'gmmsame',
            'fv_type': "fv_extern",
            'fv_extern': fv_function,
            'adaptation': 'original_data',
        }
        'mdl_stored_file': False,
    }

mdl_stored_file: if this is set, load model from file

read more about configuration

About

3D graph cut segmentation

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages

  • Python 99.4%
  • Other 0.6%