forked from miha-skalic/youtube8mchallenge
-
Notifications
You must be signed in to change notification settings - Fork 0
/
graph_ensemble.py
81 lines (62 loc) · 3.06 KB
/
graph_ensemble.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
import argparse
import tensorflow as tf
import os
from tensorflow import logging
import shutil
parser = argparse.ArgumentParser(description='TF graph model ensembler.')
parser.add_argument('--save_folder', action="store", type=str, required=True)
parser.add_argument('--models', nargs='+', action="store", type=str, required=True,
help="models must be type '/path/to/model/inference_model'")
parser.add_argument('--weights', nargs='+', action="store", type=float, required=True,
help="list of weights, must sum up to 1.'")
params = parser.parse_args()
in_models = params.models
weights = params.weights
save_folder = params.save_folder
# Make sure you do not overwrite
assert not os.path.isdir(save_folder), "Point to non-exisiting Directory!"
# Make sure you do now have weights not summing to 1
assert abs(sum(weights) - 1) < 0.0001, "Weights do not sum up to 1"
# Make sure you have correct files
for in_model in in_models:
assert os.path.isfile(in_model + ".meta")
assert len(in_models) == len(weights)
assert len(weights) > 1
common_input = tf.placeholder(tf.float32, shape=(None, 300, 1152), name="CommonIn")
common_frames = tf.placeholder(tf.int32, shape=(None,))
with tf.Session(config=tf.ConfigProto(allow_soft_placement=True)) as sess:
for i, in_model in enumerate(in_models):
with tf.variable_scope("model_{}".format(i)), tf.device("/cpu:0"):
saver = tf.train.import_meta_graph(in_model + ".meta", clear_devices=True)
logging.info("restoring variables from " + in_model)
saver.restore(sess, in_model)
input_tensor = tf.get_collection("input_batch_raw")
num_frames_tensor = tf.get_collection("num_frames")
predictions_tensor = tf.get_collection("predictions")
# Commect nodes of the graph
for g_inpt in input_tensor:
tf.contrib.graph_editor.connect(common_input, g_inpt)
for g_inpt in num_frames_tensor:
tf.contrib.graph_editor.connect(common_frames, g_inpt)
final_out = predictions_tensor[0] * weights[0]
# MapReduce the output
for sumodel_out, wfactor in zip(predictions_tensor[1:], weights[1:]):
final_out = final_out + sumodel_out * wfactor
# Reset I/O collections
tf.get_default_graph().clear_collection("input_batch_raw")
tf.add_to_collection("input_batch_raw", common_input)
tf.get_default_graph().clear_collection("num_frames")
tf.add_to_collection("num_frames", common_frames)
tf.get_default_graph().clear_collection("predictions")
tf.add_to_collection("predictions", final_out)
# Save the model
os.makedirs(save_folder)
# By quantizing we might end up with uninitialized variables.
uninit = set(sess.run(tf.report_uninitialized_variables()))
used_vars = [v for v in tf.global_variables() if v.name.split(':')[0] not in uninit]
saver = tf.train.Saver(used_vars)
saver.save(sess, os.path.join(save_folder, "inference_model"))
# copy flags
ref_falgs = os.path.join(os.path.dirname(in_models[-1]), "model_flags.json")
shutil.copy(ref_falgs, save_folder)
logging.info("We are done!")