NOTE: do not forget to copy aditional validation data (except suggested 800 files) to training dir
- Export Devices: export CUDA_VISIBLE_DEVICES=0,1
- Set path to save folder and record folder
Set path to save folder and record folder
SAVEPATH="../trained_models"
RECORDPAT="../data/frame/train"
Run following two commands:
python train.py \
--train_data_pattern="$RECORDPAT/*.tfrecord" \
--model=Lstmbidirect \
--video_level_classifier_model="LogisticModel" \
--frame_features \
--feature_names="rgb, audio" \
--feature_sizes="1024, 128" \
--batch_size=256 \
--train_dir="$SAVEPATH//LSTM_bidirectv0_logistic" \
--base_learning_rate=0.0002 \
--lstm_cells=1024 \
--num_epochs=7 \
--num_gpu 2 \
--num_readers 12 \
--start_new_model
python train.py \
--train_data_pattern="$RECORDPAT/*.tfrecord" \
--model=Lstmbidirect \
--frame_features \
--feature_names="rgb, audio" \
--feature_sizes="1024, 128" \
--batch_size=256 \
--train_dir="$SAVEPATH/LSTM_bidirectv0_MoE" \
--base_learning_rate=0.0002 \
--lstm_cells=1024 \
--num_epochs=7 \
--num_gpu 2 \
--num_readers 12 \
--start_new_model
Set path to save folder and record folder
SAVEPATH="../trained_models"
RECORDPAT="../data/frame/train"
python train.py \
--train_data_pattern="$RECORDPAT/*.tfrecord" \
--model=NetVLADModelLF \
--train_dir="$SAVEPATH/gatednetvladLF_v0" \
--frame_features=True \
--feature_names="rgb,audio" \
--feature_sizes="1024,128" \
--batch_size=80 \
--base_learning_rate=0.0002 \
--netvlad_cluster_size=256 \
--netvlad_hidden_size=1024 \
--moe_l2=1e-6 \
--iterations=300 \
--learning_rate_decay=0.8 \
--netvlad_relu=False \
--gating=True \
--moe_prob_gating=True \
--num_gpu 2 \
--num_epochs=8
python train.py \
--train_data_pattern="$RECORDPAT/*.tfrecord" \
--model=GRUbidirect_branchedBN \
--video_level_classifier_model="LogisticModel" \
--frame_features \
--feature_names="rgb, audio" \
--feature_sizes="1024, 128" \
--batch_size=256 \
--train_dir="$SAVEPATH/GRU_BN_dualpath" \
--base_learning_rate=0.0002 \
--num_epochs=7 \
--num_gpu 2 \
--num_readers 12
python train.py \
--train_data_pattern="$RECORDPAT/*.tfrecord" \
--model=DbofModel \
--video_level_classifier_model="LogisticModel" \
--frame_features \
--feature_names="rgb, audio" \
--feature_sizes="1024, 128" \
--batch_size=512 \
--train_dir="$SAVEPATH/DBoFv0" \
--num_epochs=7 \
--num_gpu 2 \
--iterations=40 \
--num_readers 12
python train.py \
--train_data_pattern="$RECORDPAT/*.tfrecord" \
--model=NetVLADModelLF \
--train_dir="$SAVEPATH/gatedlightvladLF_v0" \
--frame_features=True --feature_names="rgb,audio" \
--feature_sizes="1024,128" \
--batch_size=80 --base_learning_rate=0.0002 \
--netvlad_cluster_size=256 \
--netvlad_hidden_size=1024 \
--moe_l2=1e-6 --iterations=300 \
--learning_rate_decay=0.8 \
--netvlad_relu=False \
--gating=True \
--moe_prob_gating=True \
--lightvlad=True \
--num_gpu 2 \
--num_epochs=7 \
python train.py \
--train_data_pattern="$RECORDPAT/*.tfrecord" \
--model=Lstmbidirect \
--video_level_classifier_model="LogisticModel" \
--frame_features \
--feature_names="rgb, audio" \
--feature_sizes="1024, 128" \
--batch_size=256 \
--train_dir="$SAVEPATH//LSTM_bidirectv0_frameShuffle" \
--base_learning_rate=0.0002 \
--lstm_cells=1024 \
--num_epochs=7 \
--num_gpu 2 \
--num_readers 12 \
--frame_shuffle
--start_new_model
python train.py \
--train_data_pattern="$RECORDPAT/*.tfrecord" \
--model=GatedDbofModelLF \
--train_dir="$SAVEPATH/gatedsoftdbof" \
--frame_features=True \
--feature_names="rgb,audio" \
--feature_sizes="1024,128" \
--batch_size=80 \
--base_learning_rate=0.0002 \
--dbof_cluster_size=4096 \
--dbof_hidden_size=1024 \
--moe_l2=1e-6 \
--iterations=300 \
--dbof_relu=False \
--num_gpu 2 \
--num_epochs=7
python train.py \
--train_data_pattern="$RECORDPAT/*.tfrecord" \
--model=SoftDbofModelLF \
--train_dir="$SAVEPATH/softdboflf8000" \
--train_dir=softdboflf8000 \
--frame_features=True \
--feature_names="rgb,audio" \
--feature_sizes="1024,128" \
--batch_size=80 \
--base_learning_rate=0.0002 \
--dbof_cluster_size=8000 \
--dbof_hidden_size=1024 \
--iterations=300 \
--dbof_relu=False \
--num_gpu 2 \
--num_epochs=7
Gated GRU model:
python train.py \
--train_data_pattern="$RECORDPAT/*.tfrecord" \
--model=GRUbidirect \
--frame_features \
--feature_names="rgb, audio" \
--feature_sizes="1024, 128" \
--batch_size=256 \
--train_dir="$SAVEPATH/GRUv0_GATED" \
--base_learning_rate=0.0002 \
--lstm_cells=1024 \
--num_epochs=7 \
--num_gpu 2 \
--num_readers 12 \
--gating=True \
--moe_prob_gating=True \