-
Notifications
You must be signed in to change notification settings - Fork 118
/
1143. Longest Common Subsequence.cpp
145 lines (124 loc) · 4.89 KB
/
1143. Longest Common Subsequence.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
//DP
//Runtime: 20 ms, faster than 27.49% of C++ online submissions for Longest Common Subsequence.
//Memory Usage: 14.2 MB, less than 100.00% of C++ online submissions for Longest Common Subsequence.
//time: O(nm), space: O(nm)
class Solution {
public:
int longestCommonSubsequence(string text1, string text2) {
int m = text1.size(), n = text2.size();
vector<vector<int>> dp(m, vector<int>(n, 0));
int i1 = 0, i2 = 0;
for(int i1 = 0; i1 < m; i1++){
for(int i2 = 0; i2 < n; i2++){
//distinguish the case whether text1[i1] == text2[i2] or not so the same char won't be counted twice
if(text1[i1] == text2[i2]){
dp[i1][i2] = ((i1 > 0 && i2 > 0) ? dp[i1-1][i2-1] : 0) + 1;
}else{
dp[i1][i2] = max(((i1 > 0) ? dp[i1-1][i2] : 0),
((i2 > 0) ? dp[i1][i2-1] : 0));
}
// cout << i1 << " " << i2 << " " << dp[i1][i2] << endl;
}
}
return dp[m-1][n-1];
}
};
//DP, memory optimization
//https://leetcode.com/problems/longest-common-subsequence/discuss/348884/C%2B%2B-with-picture-O(nm)
//Runtime: 12 ms, faster than 87.59% of C++ online submissions for Longest Common Subsequence.
//Memory Usage: 8 MB, less than 100.00% of C++ online submissions for Longest Common Subsequence.
//time: O(nm), space: O(min(m,n))
class Solution {
public:
int longestCommonSubsequence(string text1, string text2) {
int m = text1.size(), n = text2.size();
vector<vector<int>> dp(2, vector<int>(n, 0));
int i1 = 0, i2 = 0;
for(int i1 = 0; i1 < m; i1++){
for(int i2 = 0; i2 < n; i2++){
//distinguish the case whether text1[i1] == text2[i2] or not so the same char won't be counted twice
if(text1[i1] == text2[i2]){
dp[i1%2][i2] = ((i1 > 0 && i2 > 0) ? dp[(i1-1)%2][i2-1] : 0) + 1;
}else{
dp[i1%2][i2] = max(((i1 > 0) ? dp[(i1-1)%2][i2] : 0),
((i2 > 0) ? dp[i1%2][i2-1] : 0));
}
// cout << i1 << " " << i2 << " " << dp[i1][i2] << endl;
}
}
return dp[(m-1)%2][n-1];
}
};
//DP, further memory optimization
//Runtime: 20 ms, faster than 75.55% of C++ online submissions for Longest Common Subsequence.
//Memory Usage: 6.7 MB, less than 100.00% of C++ online submissions for Longest Common Subsequence.
//time: O(nm), space: O(n)
class Solution {
public:
int longestCommonSubsequence(string text1, string text2){
int m = text1.size();
int n = text2.size();
vector<int> dp(n+1, 0);
for(int i = 1; i <= m; i++){
int dp_is1_js1 = dp[0]; //will be used when j = 1
// cout << dp[0] << " "; //0
for(int j = 1; j <= n; j++){
int dp_is1_j = dp[j];
if(text1[i-1] == text2[j-1]){
dp[j] = dp_is1_js1 + 1;
}else{
dp[j] = max(dp[j-1], dp[j]);
}
dp_is1_js1 = dp_is1_j;
}
}
return dp[n];
}
};
//recursion
//https://leetcode.com/articles/delete-operation-for-two-strings/
//TLE
//time: O(2^max(m,n)), space: O(max(m,n))
class Solution {
public:
int longestCommonSubsequence(string text1, string text2, int m = -1, int n = -1) {
if(m == -1) m = text1.size();
if(n == -1) n = text2.size();
if(m == 0 || n == 0){
return 0;
}
if(text1[m-1] == text2[n-1]){
return 1 + longestCommonSubsequence(text1, text2, m-1, n-1);
}
return max(longestCommonSubsequence(text1, text2, m-1, n),
longestCommonSubsequence(text1, text2, m, n-1)
);
}
};
//recursion + memo
//https://leetcode.com/articles/delete-operation-for-two-strings/
//TLE
//37 / 38 test cases passed.
//time: O(m*n), space: O(m*n)
class Solution {
public:
vector<vector<int>> memo;
int longestCommonSubsequence(string text1, string text2, int m, int n) {
if(m == 0 || n == 0){
return 0;
}
if(memo[m][n] != -1) return memo[m][n];
if(text1[m-1] == text2[n-1]){
memo[m][n] = 1 + longestCommonSubsequence(text1, text2, m-1, n-1);
}else{
memo[m][n] = max(longestCommonSubsequence(text1, text2, m-1, n),
longestCommonSubsequence(text1, text2, m, n-1));
}
return memo[m][n];
}
int longestCommonSubsequence(string text1, string text2){
int m = text1.size(), n = text2.size();
memo = vector<vector<int>>(m+1, vector(n+1, -1));
return longestCommonSubsequence(text1, text2, m, n);
}
};