-
Notifications
You must be signed in to change notification settings - Fork 31
/
Copy pathutils.py
429 lines (339 loc) · 12.5 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
import hparams as hp
import text
from scipy.io import wavfile
from matplotlib import pyplot as plt
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
import matplotlib
matplotlib.use("Agg")
import hifigan
import json
import warnings
import os
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
def get_transcript(txt_path):
with open(os.path.join(txt_path)) as f:
return f.readline().strip()
def mfa(in_dir, out_dir, mfa_path="./montreal-forced-aligner"):
"""
See https://github.com/ga642381/STYLER/blob/5404756a97d7ce69e7c7327dd4c38dec5dfbac8c/preprocess.py#L102
"""
mfa_out_dir = os.path.join(out_dir, "TextGrid")
mfa_bin_path = os.path.join(mfa_path, "bin", "mfa_align")
mfa_pretrain_path = os.path.join(mfa_path, "pretrained_models", "librispeech-lexicon.txt")
cmd = f"{mfa_bin_path} {in_dir} {mfa_pretrain_path} english {mfa_out_dir} -j 8"
print(cmd)
os.system(cmd)
return mfa_out_dir
def get_alignment(tier):
sil_phones = ['sil', 'sp', 'spn']
phones = []
durations = []
start_time = 0
end_time = 0
end_idx = 0
for t in tier._objects:
s, e, p = t.start_time, t.end_time, t.text
# Trimming leading silences
if phones == []:
if p in sil_phones:
continue
else:
start_time = s
if p not in sil_phones:
phones.append(p)
end_time = e
end_idx = len(phones)
else:
phones.append(p)
durations.append(int(np.round(
e*hp.sampling_rate/hp.hop_length)-np.round(s*hp.sampling_rate/hp.hop_length)))
# Trimming tailing silences
phones = phones[:end_idx]
durations = durations[:end_idx]
return phones, durations, start_time, end_time
def get_alignment_2D(duration_predictor_output):
L = duration_predictor_output.size(0)
expand_max_len = torch.max(duration_predictor_output).item()
alignment = torch.zeros(L*expand_max_len, L)
count = 0
for i in range(L):
for j in range(int(duration_predictor_output[i])):
alignment[count+j][i] = 1.
count = count + int(duration_predictor_output[i])
return alignment # [mel_len, seg_len]
def process_meta(meta_path):
with open(meta_path, "r", encoding="utf-8") as f:
text = []
name = []
for line in f.readlines():
n, t = line.strip('\n').split('|')
name.append(n)
text.append(t)
return name, text
def get_param_num(model):
num_param = sum(param.numel() for param in model.parameters())
return num_param
def plot_data(data, titles, filename):
fig, axes = plt.subplots(len(data), 1, squeeze=False)
if titles is None:
titles = [None for i in range(len(data))]
def add_axis(fig, old_ax, offset=0):
ax = fig.add_axes(old_ax.get_position(), anchor='W')
ax.set_facecolor("None")
return ax
for i in range(len(data)):
spectrogram, pitch, energy = data[i]
axes[i][0].imshow(spectrogram, origin='lower')
axes[i][0].set_aspect(2.5, adjustable='box')
axes[i][0].set_ylim(0, hp.n_mel_channels)
axes[i][0].set_title(titles[i], fontsize='medium')
axes[i][0].tick_params(labelsize='x-small',
left=False, labelleft=False)
axes[i][0].set_anchor('W')
ax1 = add_axis(fig, axes[i][0])
ax1.plot(pitch, color='tomato')
ax1.set_xlim(0, spectrogram.shape[1])
ax1.set_ylim(0, hp.f0_max)
ax1.set_ylabel('F0', color='tomato')
ax1.tick_params(labelsize='x-small', colors='tomato',
bottom=False, labelbottom=False)
ax2 = add_axis(fig, axes[i][0], 1.2)
ax2.plot(energy, color='darkviolet')
ax2.set_xlim(0, spectrogram.shape[1])
ax2.set_ylim(hp.energy_min, hp.energy_max)
ax2.set_ylabel('Energy', color='darkviolet')
ax2.yaxis.set_label_position('right')
ax2.tick_params(labelsize='x-small', colors='darkviolet', bottom=False,
labelbottom=False, left=False, labelleft=False, right=True, labelright=True)
# Save to filename
plt.savefig(filename, dpi=200)
# Save to numpy
fig.canvas.draw()
data = save_figure_to_numpy(fig)
plt.close()
return data
def save_figure_to_numpy(fig):
# save it to a numpy array.
data = np.fromstring(fig.canvas.tostring_rgb(), dtype=np.uint8, sep='')
data = data.reshape(fig.canvas.get_width_height()[::-1] + (3,))
return data
def plot_spectrogram(spectrogram, title, filename):
fig, ax = plt.subplots()
ax.imshow(spectrogram, origin='lower')
ax.set_aspect(2.5, adjustable='box')
ax.set_ylim(0, hp.n_mel_channels)
ax.set_title(title, fontsize='medium') if title is not None else None
ax.tick_params(labelsize='x-small',
left=False, labelleft=False)
ax.set_anchor('W')
# Save to filename
plt.savefig(filename, bbox_inches='tight', dpi=200)
# Save to numpy
fig.canvas.draw()
data = save_figure_to_numpy(fig)
plt.close()
return data
def plot_alignment(alignments, infos=None, filename=None, titles=None):
if len(alignments) <= 2:
ph, pw = 1, len(alignments)
else:
ph, pw = 2, (len(alignments)+1)//2
fig, axes = plt.subplots(ph, pw, squeeze=False)
if titles is None:
titles = [None for i in range(len(alignments))]
for h in range(ph):
for w in range(pw):
alignment = alignments[h*pw+w]
im = axes[h][w].imshow(alignment, aspect='auto', origin='lower',
interpolation='none')
fig.colorbar(im, ax=axes[h][w])
axes[h][w].set_title(titles[h*pw+w], fontsize='medium')
axes[h][w].tick_params(labelsize='x-small')
if w == 0:
axes[h][w].set_ylabel('Encoder timestep')
if h == ph-1:
xlabel = 'Decoder timestep'
if infos is not None:
xlabel += '\n\n' + infos[h*pw+w]
axes[h][w].set_xlabel(xlabel)
axes[h][w].set_anchor('W')
plt.tight_layout()
# Save to filename
if filename is not None:
plt.savefig(filename, dpi=200)
# Save to numpy
fig.canvas.draw()
data = save_figure_to_numpy(fig)
plt.close()
return data
def get_mask_from_lengths(lengths, max_len=None):
batch_size = lengths.shape[0]
if max_len is None:
max_len = torch.max(lengths).item()
ids = torch.arange(0, max_len).unsqueeze(
0).expand(batch_size, -1).to(device)
mask = (ids >= lengths.unsqueeze(1).expand(-1, max_len))
return mask
def get_vocoder():
name = hp.vocoder
speaker = hp.vocoder_speaker
if name == "MelGAN":
if speaker == "LJSpeech":
vocoder = torch.hub.load(
"descriptinc/melgan-neurips", "load_melgan", "linda_johnson"
)
elif speaker == "universal":
vocoder = torch.hub.load(
"descriptinc/melgan-neurips", "load_melgan", "multi_speaker"
)
vocoder.mel2wav.eval()
vocoder.mel2wav.to(device)
elif name == "HiFi-GAN":
with open("hifigan/config.json", "r") as f:
config = json.load(f)
config = hifigan.AttrDict(config)
vocoder = hifigan.Generator(config)
if speaker == "LJSpeech":
ckpt = torch.load("hifigan/generator_LJSpeech.pth.tar")
elif speaker == "universal":
ckpt = torch.load("hifigan/generator_universal.pth.tar")
vocoder.load_state_dict(ckpt["generator"])
vocoder.eval()
vocoder.remove_weight_norm()
vocoder.to(device)
elif name == "WaveGlow":
vocoder = torch.hub.load(
'nvidia/DeepLearningExamples:torchhub', 'nvidia_waveglow')
vocoder = vocoder.remove_weightnorm(vocoder)
vocoder.eval()
for m in vocoder.modules():
if 'Conv' in str(type(m)):
setattr(m, 'padding_mode', 'zeros')
vocoder.to(device)
return vocoder
def vocoder_infer(mel, vocoder, path):
name = hp.vocoder
with torch.no_grad():
if name == "MelGAN":
wav = vocoder.inverse(mel / np.log(10))
elif name == "HiFi-GAN":
wav = vocoder(mel).squeeze(1)
elif name == "WaveGlow":
wav = vocoder.infer(mel, sigma=1.0)
wav = (
wav.squeeze().cpu().numpy()
* hp.max_wav_value
).astype("int16")
wavfile.write(path, hp.sampling_rate, wav)
return wav
def pad_1D(inputs, PAD=0):
def pad_data(x, length, PAD):
x_padded = np.pad(x, (0, length - x.shape[0]),
mode='constant',
constant_values=PAD)
return x_padded
max_len = max((len(x) for x in inputs))
padded = np.stack([pad_data(x, max_len, PAD) for x in inputs])
return padded
def pad_2D(inputs, maxlen=None):
def pad(x, max_len):
PAD = 0
if np.shape(x)[0] > max_len:
raise ValueError("not max_len")
s = np.shape(x)[1]
x_padded = np.pad(x, (0, max_len - np.shape(x)[0]),
mode='constant',
constant_values=PAD)
return x_padded[:, :s]
if maxlen:
output = np.stack([pad(x, maxlen) for x in inputs])
else:
max_len = max(np.shape(x)[0] for x in inputs)
output = np.stack([pad(x, max_len) for x in inputs])
return output
def pad(input_ele, mel_max_length=None):
if mel_max_length:
max_len = mel_max_length
else:
max_len = max([input_ele[i].size(0)for i in range(len(input_ele))])
out_list = list()
for i, batch in enumerate(input_ele):
if len(batch.shape) == 1:
one_batch_padded = F.pad(
batch, (0, max_len-batch.size(0)), "constant", 0.0)
elif len(batch.shape) == 2:
one_batch_padded = F.pad(
batch, (0, 0, 0, max_len-batch.size(0)), "constant", 0.0)
out_list.append(one_batch_padded)
out_padded = torch.stack(out_list)
return out_padded
def get_scale(src, tgt):
return [src // tgt + (1 if x < src % tgt else 0) for x in range (tgt)]
def mel_calibrator(mel, mel_len, seq_len):
"""
mel --- [batch, mel_len, mel_hidden]
mel_len --- [batch,]
seq_len --- [batch,]
scaled_mel --- [batch, src_len, mel_hidden]
"""
batch = []
for b in range(mel_len.shape[0]):
ml, sl = int(mel_len[b].item()), int(seq_len[b].item())
m = mel[b, :ml]
if sl == ml:
batch.append(m)
continue
elif ml > sl:
# Compression
split_size = get_scale(ml, sl) # len == sl
m = nn.utils.rnn.pad_sequence(torch.split(m, split_size, dim=0)) # [unit_len, seq_len, mel_hidden]
m = torch.div(torch.sum(m, dim=0), torch.tensor(split_size, device=m.device).unsqueeze(-1)) # [seq_len, mel_hidden]
batch.append(m)
else:
# Expansions
repeat_size = get_scale(sl, ml) # len == ml
m = torch.repeat_interleave(m, torch.tensor(repeat_size, device=m.device), dim=0) # [seq_len, mel_hidden]
batch.append(m)
# Re-padding
scaled_mel = pad(batch)
return scaled_mel
def speaker_normalization(f0):
f0 = f0.astype(float).copy()
index_nonzero = (f0 > -1e10)
mean_f0, std_f0 = np.mean(f0[index_nonzero]), np.std(f0[index_nonzero])
# f0 is logf0
# f0 = np.log(f0)
#index_nonzero = f0 != 0
f0[index_nonzero] = (f0[index_nonzero] - mean_f0) / std_f0 / 4.0
f0[index_nonzero] = np.clip(f0[index_nonzero], -1, 1)
f0[index_nonzero] = (f0[index_nonzero] + 1) / 2.0
return f0 # np.exp(f0)
def f0_normalization(f0):
warnings.filterwarnings('error')
try:
f0_norm = speaker_normalization(f0)
except Warning:
f0_norm = np.zeros_like(f0)
warnings.resetwarnings()
return f0_norm
def energy_rescaling(energy):
min_, max_ = hp.energy_min, hp.energy_max
energy_rescaled = (energy-min_)/(max_-min_)
energy_rescaled = np.clip(energy_rescaled, 0, 1)
return energy_rescaled
def quantize_1D_torch(x, num_bins=256):
# x is logf0
B = x.size(0)
x = x.view(-1).clone()
uv = (x<=0)
x[uv] = 0
assert (x >= 0).all() and (x <= 1).all()
x = torch.round(x * (num_bins-1))
x = x + 1
x[uv] = 0
enc = torch.zeros((x.size(0), num_bins+1), device=x.device)
enc[torch.arange(x.size(0)), x.long()] = 1
return enc.view(B, -1, num_bins+1), x.view(B, -1).long()