-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathvip.py
403 lines (355 loc) · 16.7 KB
/
vip.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
"""
ViP Architecture in PyTorch
Copyright 2021 Shuyang Sun
"""
import math
import torch.nn.init as init
from timm.models.registry import register_model
from timm.models.layers import DropPath
from .vip_layers import *
class PatchEmbed(nn.Module):
def __init__(self, stride, has_mask=False, in_ch=0, out_ch=0):
super(PatchEmbed, self).__init__()
self.to_token = nn.Conv2d(in_ch, in_ch, kernel_size=3, padding=1, stride=stride, groups=in_ch)
self.proj = nn.Linear(in_ch, out_ch, bias=False)
self.has_mask = has_mask
def process_mask(self, x, mask, H, W):
if mask is None and self.has_mask:
mask = x.new_zeros((1, 1, H, W))
if mask is not None:
H_mask, W_mask = mask.shape[-2:]
if H_mask != H or W_mask != W:
mask = F.interpolate(mask, (H, W), mode='nearest')
return mask
def forward(self, x, mask):
"""
Args:
x: [B, C, H, W]
mask: [B, 1, H, W] if exists, else None
Returns:
out: [B, out_H * out_W, out_C]
H, W: output height & width
mask: [B, 1, out_H, out_W] if exists, else None
"""
out = self.to_token(x)
B, C, H, W = out.shape
mask = self.process_mask(out, mask, H, W)
out = rearrange(out, "b c h w -> b (h w) c").contiguous()
out = self.proj(out)
return out, H, W, mask
class Encoder(nn.Module):
def __init__(self, dim, num_parts=64, num_enc_heads=1, drop_path=0.1, act=nn.GELU, has_ffn=True):
super(Encoder, self).__init__()
self.num_heads = num_enc_heads
self.enc_attn = AnyAttention(dim, num_enc_heads)
self.drop_path = DropPath(drop_prob=drop_path) if drop_path else nn.Identity()
self.reason = SimpleReasoning(num_parts, dim)
self.enc_ffn = Mlp(dim, hidden_features=dim, act_layer=act) if has_ffn else None
def forward(self, feats, parts=None, qpos=None, kpos=None, mask=None):
"""
Args:
feats: [B, patch_num * patch_size, C]
parts: [B, N, C]
qpos: [B, N, 1, C]
kpos: [B, patch_num * patch_size, C]
mask: [B, 1, patch_num, patch_size] if exists, else None
Returns:
parts: [B, N, C]
"""
attn_out = self.enc_attn(q=parts, k=feats, v=feats, qpos=qpos, kpos=kpos, mask=mask)
parts = parts + self.drop_path(attn_out)
parts = self.reason(parts)
if self.enc_ffn is not None:
parts = parts + self.drop_path(self.enc_ffn(parts))
return parts
class Decoder(nn.Module):
def __init__(self, dim, num_heads=8, patch_size=7, ffn_exp=3, act=nn.GELU, drop_path=0.1):
super().__init__()
assert dim % num_heads == 0, f"dim {dim} should be divided by num_heads {num_heads}."
self.dim = dim
self.num_heads = num_heads
self.attn1 = AnyAttention(dim, num_heads)
self.attn2 = AnyAttention(dim, num_heads)
self.rel_pos = FullRelPos(patch_size, patch_size, dim // num_heads)
self.ffn1 = Mlp(dim, hidden_features=dim * ffn_exp, act_layer=act, norm_layer=Norm)
self.ffn2 = Mlp(dim, hidden_features=dim * ffn_exp, act_layer=act, norm_layer=Norm)
self.drop_path = DropPath(drop_path)
def forward(self, x, parts=None, part_kpos=None, mask=None, P=0):
"""
Args:
x: [B, patch_num * patch_size, C]
parts: [B, N, C]
part_kpos: [B, N, 1, C]
mask: [B, 1, patch_num, patch_size] if exists, else None
P: patch_num
Returns:
feat: [B, patch_num, patch_size, C]
"""
dec_mask = None if mask is None else rearrange(mask.squeeze(1), "b h w -> b (h w) 1 1")
out = self.attn1(q=x, k=parts, v=parts, kpos=part_kpos, mask=dec_mask)
out = x + self.drop_path(out)
out = out + self.drop_path(self.ffn1(out))
out = rearrange(out, "b (p k) c -> (b p) k c", p=P)
local_out = self.attn2(q=out, k=out, v=out, mask=mask, rel_pos=self.rel_pos)
out = out + self.drop_path(local_out)
out = out + self.drop_path(self.ffn2(out))
return rearrange(out, "(b p) k c -> b p k c", p=P)
class ViPBlock(nn.Module):
def __init__(self, dim, ffn_exp=4, drop_path=0.1, patch_size=7, num_heads=1, num_enc_heads=1, num_parts=0):
super(ViPBlock, self).__init__()
self.encoder = Encoder(dim, num_parts=num_parts, num_enc_heads=num_enc_heads, drop_path=drop_path)
self.decoder = Decoder(dim, num_heads=num_heads, patch_size=patch_size, ffn_exp=ffn_exp, drop_path=drop_path)
def forward(self, x, parts=None, part_qpos=None, part_kpos=None, mask=None):
"""
Args:
x: [B, patch_num, patch_size, C]
parts: [B, N, C]
part_qpos: [B, N, 1, C]
part_kpos: [B, N, 1, C]
mask: [B, 1, patch_num, patch_size] if exists, else None
Returns:
feats: [B, patch_num, patch_size, C]
parts: [B, N, C]
part_qpos: [B, N, 1, C]
mask: [B, 1, patch_num, patch_size] if exists, else None
"""
P = x.shape[1]
x = rearrange(x, "b p k c -> b (p k) c")
parts = self.encoder(x, parts=parts, qpos=part_qpos, mask=mask)
feats = self.decoder(x, parts=parts, part_kpos=part_kpos, mask=mask, P=P)
return feats, parts, part_qpos, mask
class Stage(nn.Module):
def __init__(self, in_ch, out_ch, num_blocks, patch_size=7, num_heads=1, num_enc_heads=1, stride=1, num_parts=0,
last_np=0, last_enc=False, drop_path=0.1, has_mask=None, ffn_exp=3):
super(Stage, self).__init__()
if isinstance(drop_path, float):
drop_path = [drop_path for _ in range(num_blocks)]
self.patch_size = patch_size
self.rpn_qpos = nn.Parameter(torch.Tensor(1, num_parts, 1, out_ch // num_enc_heads))
self.rpn_kpos = nn.Parameter(torch.Tensor(1, num_parts, 1, out_ch // num_heads))
self.proj = PatchEmbed(stride, has_mask=has_mask, in_ch=in_ch, out_ch=out_ch)
self.proj_token = nn.Sequential(
nn.Conv1d(last_np, num_parts, 1, bias=False) if last_np != num_parts else nn.Identity(),
nn.Linear(in_ch, out_ch),
Norm(out_ch)
)
self.proj_norm = Norm(out_ch)
blocks = [
ViPBlock(out_ch,
patch_size=patch_size,
num_heads=num_heads,
num_enc_heads=num_enc_heads,
num_parts=num_parts,
ffn_exp=ffn_exp,
drop_path=drop_path[i])
for i in range(num_blocks)
]
self.blocks = nn.ModuleList(blocks)
self.last_enc = Encoder(dim=out_ch,
num_enc_heads=num_enc_heads,
num_parts=num_parts,
drop_path=drop_path[-1],
has_ffn=False) if last_enc else None
self._init_weights()
def _init_weights(self):
init.kaiming_uniform_(self.rpn_qpos, a=math.sqrt(5))
trunc_normal_(self.rpn_qpos, std=.02)
init.kaiming_uniform_(self.rpn_kpos, a=math.sqrt(5))
trunc_normal_(self.rpn_kpos, std=.02)
def to_patch(self, x, patch_size, H, W, mask=None):
x = rearrange(x, "b (h w) c -> b h w c", h=H)
pad_l = pad_t = 0
pad_r = int(math.ceil(W / patch_size)) * patch_size - W
pad_b = int(math.ceil(H / patch_size)) * patch_size - H
x = F.pad(x, (0, 0, pad_l, pad_r, pad_t, pad_b))
if mask is not None:
mask = F.pad(mask, (pad_l, pad_r, pad_t, pad_b), value=1)
x = rearrange(x, "b (sh kh) (sw kw) c -> b (sh sw) (kh kw) c", kh=patch_size, kw=patch_size)
if mask is not None:
mask = rearrange(mask, "b c (sh kh) (sw kw) -> b c (kh kw) (sh sw)", kh=patch_size, kw=patch_size)
return x, mask, H + pad_b, W + pad_r
def forward(self, x, parts=None, mask=None):
"""
Args:
x: [B, C, H, W]
parts: [B, N, C]
mask: [B, 1, H, W] if exists, else None
Returns:
x: [B, out_C, out_H, out_W]
parts: [B, out_N, out_C]
mask: [B, 1, out_H, out_W] if exists else None
"""
x, H, W, mask = self.proj(x, mask=mask)
x = self.proj_norm(x)
if self.proj_token is not None:
parts = self.proj_token(parts)
rpn_qpos, rpn_kpos = self.rpn_qpos, self.rpn_kpos
rpn_qpos = rpn_qpos.expand(x.shape[0], -1, -1, -1)
rpn_kpos = rpn_kpos.expand(x.shape[0], -1, -1, -1)
ori_H, ori_W = H, W
x, mask, H, W = self.to_patch(x, self.patch_size, H, W, mask)
for blk in self.blocks:
# x: [B, K, P, C]
x, parts, rpn_qpos, mask = blk(x,
parts=parts,
part_qpos=rpn_qpos,
part_kpos=rpn_kpos,
mask=mask)
dec_mask = None if mask is None else rearrange(mask.squeeze(1), "b h w -> b 1 1 (h w)")
if self.last_enc is not None:
x = rearrange(x, "b p k c -> b (p k) c")
rpn_out = self.last_enc(x, parts=parts, qpos=rpn_qpos, mask=dec_mask)
return rpn_out, parts, mask
else:
x = rearrange(x, "b (sh sw) (kh kw) c -> b c (sh kh) (sw kw)", kh=self.patch_size, sh=H // self.patch_size)
x = x[:, :, :ori_H, :ori_W]
return x, parts, mask
class ViP(nn.Module):
def __init__(self,
in_chans=3,
inplanes=64,
num_layers=(3, 4, 6, 3),
num_chs=(256, 512, 1024, 2048),
num_strides=(1, 2, 2, 2),
num_classes=1000,
num_heads=(1, 1, 1, 1),
num_parts=(1, 1, 1, 1),
patch_sizes=(1, 1, 1, 1),
drop_path=0.1,
num_enc_heads=(1, 1, 1, 1),
act=nn.GELU,
ffn_exp=3,
no_pos_wd=False,
has_last_encoder=False,
pretrained=False,
**ret_args):
super(ViP, self).__init__()
self.depth = len(num_layers)
self.no_pos_wd = no_pos_wd
self.conv1 = nn.Conv2d(in_chans, inplanes, kernel_size=7, padding=3, stride=2, bias=False)
self.norm1 = nn.BatchNorm2d(inplanes)
self.act = act()
self.pool1 = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
self.rpn_tokens = nn.Parameter(torch.Tensor(1, num_parts[0], inplanes))
drop_path_ratios = torch.linspace(0, drop_path, sum(num_layers))
last_chs = [inplanes, *num_chs[:-1]]
last_nps = [num_parts[0], *num_parts[:-1]]
for i, n_l in enumerate(num_layers):
stage_ratios = [drop_path_ratios[sum(num_layers[:i]) + did] for did in range(n_l)]
setattr(self,
"layer_{}".format(i),
Stage(last_chs[i],
num_chs[i],
n_l,
stride=num_strides[i],
num_heads=num_heads[i],
num_enc_heads=num_enc_heads[i],
patch_size=patch_sizes[i],
drop_path=stage_ratios,
ffn_exp=ffn_exp,
num_parts=num_parts[i],
last_np=last_nps[i],
last_enc=has_last_encoder and i == len(num_layers) - 1)
)
if has_last_encoder:
self.last_fc = nn.Linear(num_chs[-1], num_classes)
else:
self.last_linear = nn.Conv2d(num_chs[-1], num_chs[-1], kernel_size=1, bias=False)
self.last_norm = nn.BatchNorm2d(num_chs[-1])
self.pool2 = nn.AdaptiveAvgPool2d(1)
self.last_fc = nn.Linear(num_chs[-1], num_classes)
self.has_last_encoder = has_last_encoder
self._init_weights(pretrained=pretrained)
@torch.jit.ignore
def no_weight_decay(self):
skip_pattern = ['rel_pos'] if self.no_pos_wd else []
no_wd_layers = set()
for name, param in self.named_parameters():
for skip_name in skip_pattern:
if skip_name in name:
no_wd_layers.add(name)
return no_wd_layers
def _init_weights(self, pretrained=None):
if isinstance(pretrained, str):
state_dict = torch.load(pretrained, map_location=torch.device("cpu"))
if "state_dict" in state_dict.keys():
state_dict = state_dict["state_dict"]
self.load_state_dict(state_dict, strict=True)
return
init.kaiming_uniform_(self.rpn_tokens, a=math.sqrt(5))
trunc_normal_(self.rpn_tokens, std=.02)
for m in self.modules():
if isinstance(m, nn.Conv2d):
n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
m.weight.data.normal_(0, math.sqrt(2. / n))
trunc_normal_(m.weight, std=.02)
if m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.Conv1d):
n = m.kernel_size[0] * m.out_channels
m.weight.data.normal_(0, math.sqrt(2. / n))
trunc_normal_(m.weight, std=.02)
if m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, (nn.BatchNorm2d, nn.BatchNorm1d)):
if not torch.sum(m.weight.data == 0).item() == m.num_features: # zero gamma
m.weight.data.fill_(1)
m.bias.data.zero_()
elif isinstance(m, nn.Linear):
trunc_normal_(m.weight, std=.02)
if m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.LayerNorm):
nn.init.constant_(m.bias, 0)
nn.init.constant_(m.weight, 1.0)
def forward(self, x):
out = self.conv1(x)
out = self.norm1(out)
out = self.act(out)
out = self.pool1(out)
B, _, H, W = out.shape
rpn_tokens, mask = self.rpn_tokens.expand(x.shape[0], -1, -1), None
for i in range(self.depth):
layer = getattr(self, "layer_{}".format(i))
out, rpn_tokens, mask = layer(out, rpn_tokens, mask=mask)
if self.has_last_encoder:
out = self.act(out)
out = out.mean(1)
else:
out = self.last_linear(out)
out = self.last_norm(out)
out = self.act(out)
out = self.pool2(out)
out = out.squeeze()
out = self.last_fc(out).squeeze()
return out.view(out.size(0), -1)
@register_model
def vip_mobile(pretrained=False, **cfg):
model_cfg = dict(inplanes=64, num_chs=(48, 96, 192, 384), patch_sizes=[8, 7, 7, 7], num_heads=[1, 2, 4, 8],
num_enc_heads=[1, 2, 4, 8], num_parts=[16, 16, 16, 32], num_layers=[1, 1, 1, 1], ffn_exp=3,
has_last_encoder=True, drop_path=0., **cfg)
return ViP(pretrained=pretrained, **model_cfg)
@register_model
def vip_tiny(pretrained=False, **cfg):
model_cfg = dict(inplanes=64, num_chs=(64, 128, 256, 512), patch_sizes=[8, 7, 7, 7], num_heads=[1, 2, 4, 8],
num_enc_heads=[1, 2, 4, 8], num_parts=[32, 32, 32, 32], num_layers=[1, 1, 2, 1], ffn_exp=3,
has_last_encoder=True, drop_path=0.1, **cfg)
return ViP(pretrained=pretrained, **model_cfg)
@register_model
def vip_small(pretrained=False, **cfg):
model_cfg = dict(inplanes=64, num_chs=(96, 192, 384, 768), patch_sizes=[8, 7, 7, 7], num_heads=[3, 6, 12, 24],
num_enc_heads=[1, 3, 6, 12], num_parts=[64, 64, 64, 64], num_layers=[1, 1, 3, 1], ffn_exp=3,
has_last_encoder=True, drop_path=0.1, **cfg)
return ViP(pretrained=pretrained, **model_cfg)
@register_model
def vip_medium(pretrained=False, **cfg):
model_cfg = dict(inplanes=64, num_chs=(96, 192, 384, 768), patch_sizes=[8, 7, 7, 7], num_heads=[3, 6, 12, 24],
num_enc_heads=[1, 3, 6, 12], num_parts=[64, 64, 64, 128], num_layers=[1, 1, 8, 1], ffn_exp=3,
has_last_encoder=False, drop_path=0.2, **cfg)
return ViP(pretrained=pretrained, **model_cfg)
@register_model
def vip_base(pretrained=False, **cfg):
model_cfg = dict(inplanes=64, num_chs=(128, 256, 512, 1024), patch_sizes=[8, 7, 7, 7], num_heads=[4, 8, 16, 32],
num_enc_heads=[1, 4, 8, 16], num_parts=[64, 64, 128, 128], num_layers=[1, 1, 8, 1], ffn_exp=3,
has_last_encoder=False, drop_path=0.3, **cfg)
return ViP(pretrained=pretrained, **model_cfg)