forked from intel/neural-compressor
-
Notifications
You must be signed in to change notification settings - Fork 0
/
strategy.py
605 lines (523 loc) · 28 KB
/
strategy.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
#!/usr/bin/env python
# -*- coding: utf-8 -*-
#
# Copyright (c) 2021 Intel Corporation
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from abc import abstractmethod
import os
import math
import copy
import pickle
from collections import OrderedDict
from pathlib import Path
import yaml
import numpy as np
from ..adaptor import FRAMEWORKS
from ..objective import OBJECTIVES
from ..utils.utility import fault_tolerant_file, equal_dicts, GLOBAL_STATE, MODE
from ..utils.create_obj_from_config import create_eval_func, create_train_func
from ..utils import logger
from ..utils import OPTIONS
from ..version import __version__
from ..conf.dotdict import DotDict, deep_get, deep_set
from ..algorithm import AlgorithmScheduler
"""The tuning strategies supported by neural_compressor, including basic, random, bayesian and mse.
User could add new strategies by implementing new TuneStrategy subclass under this directory.
The naming convention of new strategy subclass should be something like ABCTuneStrategy, user
could choose this strategy by setting "abc" string in tuning.strategy field of yaml.
STRATEGIES variable is used to store all implemented TuneStrategy subclasses to support
different tuning strategies.
"""
STRATEGIES = {}
def strategy_registry(cls):
"""The class decorator used to register all TuneStrategy subclasses.
Args:
cls (class): The class of register.
Returns:
cls: The class of register.
"""
assert cls.__name__.endswith(
'TuneStrategy'
), "The name of subclass of TuneStrategy should end with \'TuneStrategy\' substring."
if cls.__name__[:-len('TuneStrategy')].lower() in STRATEGIES:
raise ValueError('Cannot have two strategies with the same name')
STRATEGIES[cls.__name__[:-len('TuneStrategy')].lower()] = cls
return cls
class TuneStrategy(object):
"""The base class of tuning strategy.
Args:
model (object): The FP32 model specified for low precision tuning.
conf (Conf): The Conf class instance initialized from user yaml
config file.
q_dataloader (generator): Data loader for calibration, mandatory for
post-training quantization.
It is iterable and should yield a tuple (input,
label) for calibration dataset containing label,
or yield (input, _) for label-free calibration
dataset. The input could be a object, list, tuple or
dict, depending on user implementation, as well as
it can be taken as model input.
q_func (function, optional): Reserved for future use.
eval_dataloader (generator, optional): Data loader for evaluation. It is iterable
and should yield a tuple of (input, label).
The input could be a object, list, tuple or dict,
depending on user implementation, as well as it can
be taken as model input. The label should be able
to take as input of supported metrics. If this
parameter is not None, user needs to specify
pre-defined evaluation metrics through configuration
file and should set "eval_func" parameter as None.
Tuner will combine model, eval_dataloader and
pre-defined metrics to run evaluation process.
eval_func (function, optional): The evaluation function provided by user.
This function takes model as parameter, and
evaluation dataset and metrics should be
encapsulated in this function implementation and
outputs a higher-is-better accuracy scalar value.
The pseudo code should be something like:
def eval_func(model):
input, label = dataloader()
output = model(input)
accuracy = metric(output, label)
return accuracy
resume(dict, optional): The dict containing resume information.
Defaults to None.
"""
def __init__(self, model, conf, q_dataloader=None, q_func=None,
eval_dataloader=None, eval_func=None, resume=None, q_hooks=None):
self.model = model
self.cfg = conf.usr_cfg
self.history_path = os.path.join(os.path.abspath(os.path.expanduser( \
self.cfg.tuning.workspace.path)),
'./history.snapshot')
self.deploy_path = os.path.join(os.path.abspath(os.path.expanduser( \
self.cfg.tuning.workspace.path)),
'deploy.yaml')
path = Path(os.path.dirname(self.history_path))
path.mkdir(exist_ok=True, parents=True)
path = Path(os.path.dirname(self.deploy_path))
path.mkdir(exist_ok=True, parents=True)
logger.debug("Dump user yaml configuration:")
logger.debug(self.cfg)
self.eval_dataloader = eval_dataloader
self.calib_dataloader = q_dataloader
self.q_func = q_func
self.q_hooks = q_hooks
self.eval_func = eval_func
GLOBAL_STATE.STATE = MODE.QUANTIZATION
framework_specific_info = {'device': self.cfg.device,
'approach': self.cfg.quantization.approach,
'random_seed': self.cfg.tuning.random_seed}
framework = self.cfg.model.framework.lower()
if framework == 'tensorflow' or framework == 'tensorflow_itex':
framework_specific_info.update(
{"inputs": self.cfg.model.inputs,
"outputs": self.cfg.model.outputs,
'workspace_path': self.cfg.tuning.workspace.path,
'recipes': self.cfg.quantization.recipes})
if framework == 'mxnet':
framework_specific_info.update({"q_dataloader": q_dataloader})
if 'onnxrt' in framework.lower():
framework_specific_info.update({"backend": framework.lower().split('_')[-1]})
framework_specific_info.update({"deploy_path": os.path.dirname(self.deploy_path)})
framework_specific_info.update({'workspace_path': self.cfg.tuning.workspace.path})
framework_specific_info.update(
{'graph_optimization': OPTIONS[framework].graph_optimization})
if framework == 'pytorch_ipex' or framework == 'pytorch' or framework == 'pytorch_fx':
framework_specific_info.update({"q_dataloader": q_dataloader})
framework_specific_info.update(
{"workspace_path": os.path.dirname(self.deploy_path)})
if self.cfg['quantization']['op_wise'] is not None \
and 'default_qconfig' in self.cfg['quantization']['op_wise']:
framework_specific_info.update(
{"default_qconfig": self.cfg['quantization']['op_wise']['default_qconfig']})
if framework == 'engine':
framework_specific_info.update(
{'workspace_path': self.cfg.tuning.workspace.path})
self.adaptor = FRAMEWORKS[framework](framework_specific_info)
self.framework = framework
if self.q_func == None and self.cfg.quantization.approach == 'quant_aware_training':
train_cfg = self.cfg.quantization.train
assert train_cfg, "train field of quantization section in yaml file must " \
"be configured for quantization aware training if q_func is NOT set."
assert self.calib_dataloader, "dataloader field of train field of quantization " \
"section in yaml file must be configured."
self.q_func = create_train_func(self.framework, self.calib_dataloader, \
self.adaptor, train_cfg, hooks=self.q_hooks)
self.baseline = None
self.last_tune_result = None
self.last_qmodel = None
self.best_tune_result = None
self.best_qmodel = None
objective = self.cfg.tuning.objective.lower()
self.objective = OBJECTIVES[objective](self.cfg.tuning.accuracy_criterion)
self.capability = self.adaptor.query_fw_capability(model)
self.graph_optimization_mode = bool('graph_optimization' in self.cfg)
self.modelwise_tune_space = conf.modelwise_tune_space(self.capability['optypewise'])
self.opwise_tune_space = conf.opwise_tune_space(self.capability['opwise'])
self.model_wise_tune_cfgs = OrderedDict()
for optype, optype_cfgs in self.modelwise_tune_space.items():
self.model_wise_tune_cfgs[optype] = conf.expand_tune_cfgs(optype_cfgs)
self.opwise_tune_cfgs = OrderedDict()
for key in self.opwise_tune_space:
expanded_cfg = conf.expand_tune_cfgs(self.opwise_tune_space[key])
if expanded_cfg:
self.opwise_tune_cfgs[key] = expanded_cfg
self.calib_sampling_size = self.cfg.quantization.calibration.sampling_size
if self.calib_dataloader:
self.calib_iter = [math.ceil(int(x) / self.calib_dataloader.batch_size) \
for x in self.cfg.quantization.calibration.sampling_size]
else:
self.calib_iter = [1]
fallback_precision_list = ['fp32'] if self.graph_optimization_mode else ['fp32', 'bf16']
self.model_wise_quant_cfgs = OrderedDict()
for optype in self.model_wise_tune_cfgs.keys():
self.model_wise_quant_cfgs[optype] = []
for cfg in self.model_wise_tune_cfgs[optype]:
if cfg['activation']['dtype'] not in fallback_precision_list:
self.model_wise_quant_cfgs[optype].append(cfg)
self.combined_model_wise_quant_cfgs = conf._combine_optype_quant_cfgs(
self.model_wise_quant_cfgs)
if len(self.combined_model_wise_quant_cfgs) == 0:
logger.warning("No valid model wise quantization config found.")
self.opwise_quant_cfgs = OrderedDict()
for key in self.opwise_tune_cfgs:
cfg_list = self.opwise_tune_cfgs[key]
new_list = []
for cfg in cfg_list:
if self.graph_optimization_mode:
if cfg['activation']['dtype'] in self.cfg.graph_optimization.precisions:
new_list.append(cfg)
else:
if cfg['activation']['dtype'] not in fallback_precision_list:
new_list.append(cfg)
self.opwise_quant_cfgs[key] = new_list
self.algo = AlgorithmScheduler(self.cfg.quantization.recipes)
self.algo.dataloader = self.calib_dataloader
# reuse the calibration iteration
self.algo.origin_model = self.model
self.algo.adaptor = self.adaptor
# The tuning history ever made, structured like below:
# [
# {
# 'version': __version__,
# 'cfg': cfg1,
# 'framework': tensorflow
# 'baseline': baseline1,
# 'last_tune_result': last_tune_result1,
# 'best_tune_result': best_tune_result1,
# 'history': [
# # tuning history under same yaml config
# {'tune_cfg': tune_cfg1, 'tune_result': \
# tune_result1, 'q_config': q_config1, ...},
# ...,
# ],
# # new fields added by subclass for resuming
# ...,
# },
# # tuning history under different yaml configs
# ...,
# ]
self.tuning_history = []
if resume is not None:
self.__dict__.update(resume)
for history in self.tuning_history:
if self._same_yaml(history['cfg'], self.cfg):
self.__dict__.update({k: v for k, v in history.items() \
if k not in ['version', 'history']})
logger.info("Start to resume tuning process.")
break
def _same_yaml(self, src_yaml, dst_yaml):
"""Check whether two yamls are same, excluding those keys which does not really
impact tuning result, such as tensorboard, workspace, resume options under tuning
section of yaml.
"""
if equal_dicts(src_yaml, dst_yaml, ignore_keys=['tuning']) and \
equal_dicts(src_yaml.tuning, src_yaml.tuning, compare_keys=['objective',
'accuracy_criterion',
'random_seed',
'exit_policy']):
return True
return False
@abstractmethod
def next_tune_cfg(self):
"""The generator of yielding next tuning config to traverse by concrete strategies
according to last tuning result.
Yields:
tune_config (dict): It's a dict containing the tuning configuration to run.
"""
raise NotImplementedError
def traverse(self):
"""The main traverse logic, which could be override by some concrete strategy which needs
more hooks.
"""
if not (self.cfg.evaluation and self.cfg.evaluation.accuracy and \
self.cfg.evaluation.accuracy.metric) and self.eval_func is None:
logger.info("Neither evaluation function nor metric is defined." \
" Generate a quantized model with default quantization configuration.")
self.cfg.tuning.exit_policy.performance_only = True
logger.info("Generate a fake evaluation function.")
self.eval_func = self._fake_eval_func
# get fp32 model baseline
if self.baseline is None:
logger.info("Get FP32 model baseline.")
self.baseline = self._evaluate(self.model)
# record the FP32 baseline
self._add_tuning_history()
baseline_msg = '[Accuracy: {:.4f}, {}: {:.4f}]'.format(self.baseline[0],
str(self.objective.measurer).capitalize(), \
self.baseline[1]) if self.baseline else 'n/a'
logger.info("FP32 baseline is: {}".format(baseline_msg))
trials_count = 0
for tune_cfg in self.next_tune_cfg():
# add tune_cfg here as quantize use tune_cfg
tune_cfg['advance'] = self.cfg.quantization.advance
trials_count += 1
tuning_history = self._find_tuning_history(tune_cfg)
if tuning_history and trials_count < self.cfg.tuning.exit_policy.max_trials:
self.last_tune_result = tuning_history['last_tune_result']
self.best_tune_result = tuning_history['best_tune_result']
logger.warn("Find evaluated tuning config, skip.")
continue
logger.debug("Dump current tuning configuration:")
logger.debug(tune_cfg)
self.q_model = self.adaptor.quantize(
tune_cfg, self.model, self.calib_dataloader, self.q_func)
self.algo.calib_iter = tune_cfg['calib_iteration']
self.algo.q_model = self.q_model
# TODO align the api to let strategy has access to pre_optimized model
assert self.adaptor.pre_optimized_model
self.algo.origin_model = self.adaptor.pre_optimized_model
self.last_qmodel = self.algo()
assert self.last_qmodel
self.last_tune_result = self._evaluate(self.last_qmodel)
need_stop = self.stop(self.cfg.tuning.exit_policy.timeout, trials_count)
# record the tuning history
saved_tune_cfg = copy.deepcopy(tune_cfg)
saved_last_tune_result = copy.deepcopy(self.last_tune_result)
self._add_tuning_history(saved_tune_cfg,
saved_last_tune_result,
q_config=self.q_model.q_config)
if need_stop:
break
def deploy_config(self):
acc_dataloader_cfg = deep_get(self.cfg, 'evaluation.accuracy.dataloader')
perf_dataloader_cfg = deep_get(self.cfg, 'evaluation.performance.dataloader')
# use acc dataloader if perf dataloader is not configured
if perf_dataloader_cfg is None:
perf_dataloader_cfg = acc_dataloader_cfg
self.deploy_cfg = OrderedDict()
# int8 dataloader graph transform
if deep_get(perf_dataloader_cfg, 'transform.QuantizedInput') is not None \
or deep_get(acc_dataloader_cfg, 'transform.QuantizedInput') is not None:
self.best_qmodel, scale = self.adaptor.quantize_input(self.best_qmodel)
deep_set(perf_dataloader_cfg, 'transform.QuantizedInput.dtype', 'int8')
deep_set(perf_dataloader_cfg, 'transform.QuantizedInput.scale', scale)
deep_set(acc_dataloader_cfg, 'transform.QuantizedInput.dtype', 'int8')
deep_set(acc_dataloader_cfg, 'transform.QuantizedInput.scale', scale)
self.deploy_cfg['model'] = self.cfg.model
self.deploy_cfg['device'] = self.cfg.device
if self.cfg.evaluation is not None:
deep_set(self.cfg, 'evaluation.performance.dataloader',\
perf_dataloader_cfg)
deep_set(self.cfg, 'evaluation.accuracy.dataloader', \
acc_dataloader_cfg)
self.deploy_cfg['evaluation'] = self.cfg.evaluation
def setup_yaml():
represent_dict_order = lambda self, \
data: self.represent_mapping('tag:yaml.org,2002:map', data.items())
yaml.add_representer(OrderedDict, represent_dict_order)
yaml.add_representer(DotDict, represent_dict_order)
setup_yaml()
with open(self.deploy_path, 'w+') as f:
yaml.dump(self.deploy_cfg, f)
logger.info("Save deploy yaml to {}".format(self.deploy_path))
def _get_common_cfg(self, model_wise_cfg, op_wise_cfgs):
"""Get the common parts from the model_wise_cfg.
This function is focused on composing the configuration that consists of
model-wise field and op-wise unique field data.
Args:
model_wise_cfg ([DotDict]): The model-wise configuration.
op_wise_cfgs ([List]): The list of each op's config in DotDict type.
Returns:
[DotDict]: The combined configration with the op-wise unique field.
"""
model_wise_keys = model_wise_cfg.keys()
result = op_wise_cfgs[0]
for each_op_wise_cfg in op_wise_cfgs:
tmp_cfg = {}
for k in model_wise_keys:
tmp_cfg[k] = each_op_wise_cfg[k]
if model_wise_cfg == tmp_cfg:
result = each_op_wise_cfg
break
return result
@property
def evaluation_result(self):
return self._evaluate(self.model)
def _evaluate(self, model):
"""The interface of evaluating model.
Args:
model (object): The model to be evaluated.
Returns:
Objective: The objective value evaluated
"""
if self.eval_func:
if self.cfg.tuning.tensorboard:
# Pytorch can insert observer to model in this hook.
# Tensorflow don't support this mode for now
model = self.adaptor._pre_eval_hook(model)
val = self.objective.evaluate(self.eval_func, model.model)
if self.cfg.tuning.tensorboard:
# post_eval_hook to deal the tensor
self.adaptor._post_eval_hook(model, accuracy=val[0])
else:
assert self.cfg.evaluation and self.cfg.evaluation.accuracy and \
self.cfg.evaluation.accuracy.metric, \
'metric field of accuracy field of evaluation section should not be empty'
postprocess_cfg = self.cfg.evaluation.accuracy.postprocess
eval_func = create_eval_func(self.framework, \
self.eval_dataloader, \
self.adaptor, \
self.cfg.evaluation.accuracy.metric, \
postprocess_cfg, \
self.cfg.evaluation.accuracy.iteration, \
tensorboard = self.cfg.tuning.tensorboard, \
fp32_baseline = self.baseline == None)
val = self.objective.evaluate(eval_func, model)
assert np.isscalar(val[0]), \
"The eval_func should return a scalar, but not {}!".format(str(type(val[0])))
return val
def __getstate__(self):
"""Magic method for pickle saving.
Returns:
dict: Saved dict for resuming
"""
return {'tuning_history': self.tuning_history}
def __setstate__(self, d):
"""Magic method for pickle loading.
Args:
d (dict): The dict to load.
"""
self.__dict__.update(d)
def stop(self, timeout, trials_count):
"""Check if need to stop traversing the tuning space, either accuracy goal is met
or timeout is reach.
Returns:
bool: True if need stop, otherwise False
"""
need_stop = False
if self.cfg.tuning.exit_policy.performance_only or \
self.objective.compare(self.best_tune_result, self.baseline):
del self.best_tune_result
del self.best_qmodel
self.best_tune_result = self.last_tune_result
self.best_qmodel = self.last_qmodel
else:
del self.last_qmodel
last_tune_msg = '[Accuracy (int8|fp32): {:.4f}|{:.4f}, {} (int8|fp32): {:.4f}|{:.4f}]'.format( \
self.last_tune_result[0], self.baseline[0], \
str(self.objective.measurer).capitalize(), \
self.last_tune_result[1], self.baseline[1]) \
if self.last_tune_result else 'n/a'
best_tune_msg = '[Accuracy: {:.4f}, {}: {:.4f}]'.format(self.best_tune_result[0], \
str(self.objective.measurer).capitalize(), \
self.best_tune_result[1]) if self.best_tune_result else 'n/a'
logger.info("Tune {} result is: {}, Best tune result is: {}".format(trials_count,
last_tune_msg,
best_tune_msg))
if self.cfg.tuning.exit_policy.performance_only:
need_stop = True
elif timeout == 0 and self.best_tune_result:
need_stop = True
elif trials_count >= self.cfg.tuning.exit_policy.max_trials:
need_stop = True
else:
need_stop = False
return need_stop
def _save(self):
"""save current tuning state to snapshot for resuming.
"""
logger.info("Save tuning history to {}.".format(self.history_path))
with fault_tolerant_file(self.history_path) as f:
pickle.dump(self, f, protocol=pickle.HIGHEST_PROTOCOL)
def _find_tuning_history(self, tune_cfg):
"""check if the specified tune_cfg is evaluated or not on same yaml config.
Args:
tune_cfg (dict): The tune_cfg to check if evaluated before.
Returns:
tuning_history or None: The tuning history containing evaluated tune_cfg.
"""
for tuning_history in self.tuning_history:
# only check if a tune_cfg is evaluated under same yam config, excluding
# some fields in tuning section of yaml, such as tensorboard, snapshot, resume.
if self._same_yaml(tuning_history['cfg'], self.cfg):
for history in tuning_history['history']:
if history and history['tune_cfg'] == tune_cfg:
return tuning_history
return None
def _find_history(self, tune_cfg):
"""check if the specified tune_cfg is evaluated or not on same yaml config.
Returns:
history or None: The history containing evaluated tune_cfg.
"""
for tuning_history in self.tuning_history:
# only check if a tune_cfg is evaluated under same yam config, excluding
# some fields in tuning section of yaml, such as tensorboard, snapshot, resume.
if self._same_yaml(tuning_history['cfg'], self.cfg):
for history in tuning_history['history']:
if history and history['tune_cfg'] == tune_cfg:
return history
return None
def _find_self_tuning_history(self):
"""find self history dict.
Returns:
history or None: The history for self.
"""
for tuning_history in self.tuning_history:
# only check if a tune_cfg is evaluated under same yam config, excluding
# some fields in tuning section of yaml, such as tensorboard, snapshot, resume.
if self._same_yaml(tuning_history['cfg'], self.cfg):
return tuning_history
return None
def _add_tuning_history(self, tune_cfg=None, tune_result=None, **kwargs):
"""add tuning history.
note this record is added under same yaml config.
"""
found = False
d = {'tune_cfg': tune_cfg, 'tune_result': tune_result}
for tuning_history in self.tuning_history:
if self._same_yaml(tuning_history['cfg'], self.cfg):
d.update(kwargs)
tuning_history['history'].append(d)
tuning_history['last_tune_result'] = self.last_tune_result
tuning_history['best_tune_result'] = self.best_tune_result
tuning_history['cfg'] = self.cfg
found = True
break
if not found:
tuning_history = {}
tuning_history['version'] = __version__
tuning_history['cfg'] = self.cfg
tuning_history['baseline'] = self.baseline
tuning_history['last_tune_result'] = self.last_tune_result
tuning_history['best_tune_result'] = self.best_tune_result
tuning_history['history'] = []
if tune_cfg and tune_result:
d.update(kwargs)
tuning_history['history'].append(d)
self.tuning_history.append(tuning_history)
self._save()
def _fake_eval_func(self, model):
return 1.