-
Notifications
You must be signed in to change notification settings - Fork 2
/
_sinasc_dict.R
552 lines (539 loc) · 18 KB
/
_sinasc_dict.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
## a data dictionary for the SINASC data
##---------------------------------------------------------
sinasc_dict <- list(
NUMERODN = list(
type = "character",
name_en = "dn_number",
label_en = "DN number sequential by UF and year",
label = "Número da DN, seqüencial por UF informante e por ano"
),
LOCNASC = list(
type = "factor",
name_en = "birth_place",
label_en = "Place of birth",
map_en = c("1" = "Hospital",
"2" = "Other Health Estab",
"3" = "Home",
"4" = "Other",
"9" = NA),
label = "Local de ocorrência do nascimento",
map = c("1" = "Hospital",
"2" = "Outro Estab Saúde",
"3" = "Domicílio",
"4" = "Outros",
"9" = NA)
),
CODESTAB = list(
type = "character",
name_en = "health_estbl_code",
label_en = "Health establishment code",
label = "Código de estabelecimento de saúde"
),
CODBAINASC = list(
type = "character",
name_en = "birth_nbhd_code",
label_en = "Birth neighborhood code",
label = "Código Bairro nascimento"
),
CODMUNNASC = list(
type = "character",
name_en = "birth_muni_code",
label_en = "Birth municipal code",
label = "Código do município de ocorrência"
),
IDADEMAE = list(
type = "numeric",
name_en = "m_age_yrs",
label_en = "Age of the mother in years",
label = "Idade da mãe em anos"
),
ESTCIVMAE = list(
type = "factor",
name_en = "marital_status",
label_en = "Mother's marital status",
map_en = c("1" = "Single",
"2" = "Married",
"3" = "Widow",
"4" = "Separated / Divorced",
"5" = "Single", # Consensual Union (pre-2005 but we want consistent mappings)
"9" = NA),
label = "Estado civil",
map = c("1" = "Solteira",
"2" = "Casada",
"3" = "Viúva",
"4" = "Separado judicialmente/Divorciado",
"5" = "Solteira", # União consensual (versões anteriores)
"9" = NA)
),
ESCMAE = list(
type = "factor",
name_en = "m_educ",
label_en = "Mother's education",
map_en = c("1" = "None",
"2" = "1 to 3 years",
"3" = "4 to 7 years",
"4" = "8 to 11 years",
"5" = "12 and more",
"9" = NA),
label = "Escolaridade, anos de estudo concluídos",
map = c("1" = "Nenhuma",
"2" = "1 a 3anos",
"3" = "4 a 7anos",
"4" = "8 a 11anos",
"5" = "12 e mais",
"9" = NA)
),
CODOCUPMAE = list(
type = "character",
name_en = "occ_code",
label_en = "Mother's occupation, according to the Brazilian Occupations (CBO-2002)",
label = "Ocupação, conforme a Classificação Brasileira de Ocupações (CBO-2002)"
),
QTDFILVIVO = list(
type = "numeric",
name_en = "n_live_child",
label_en = "Number of living children",
label = "Número de filhos vivos"
),
QTDFILMORT = list(
type = "numeric",
name_en = "n_dead_child",
label_en = "Number of deceased children",
label = "Número de filhos mortos"
),
CODBAIRES = list(
type = "character",
name_en = "res_nbhd_code",
label_en = "Residence neighborhood code",
label = "Código bairro residência"
),
CODMUNRES = list(
type = "character",
name_en = "m_muni_code",
label_en = "Residence municipal code of the mother",
label = "Município de residência da mãe"
),
GESTACAO = list(
type = "factor",
name_en = "gest_weeks",
label_en = "Weeks of gestation",
map_en = c("1" = "Less than 22 weeks",
"2" = "22-27 weeks",
# "3" = "28 to 31 weeks",
"3" = "28-31 weeks",
"4" = "32-36 weeks",
"5" = "37-41 weeks",
"6" = "42 weeks and more",
"9" = NA),
label = "Semanas de gestação",
map = c("1" = "Menos de 22 semanas",
"2" = "22 a 27 semanas",
"3" = "28 a 31 semanas",
"4" = "32 a 36 semanas",
"5" = "37 a 41 semanas",
"6" = "42 semanas e mais",
"9" = NA)
),
GRAVIDEZ = list(
type = "factor",
name_en = "preg_type",
label_en = "Type of pregnancy",
map_en = c("1" = "Singleton",
"2" = "Twins",
"3" = "Triplets and more",
"9" = NA),
label = "Tipo de gravidez",
map = c("1" = "Única",
"2" = "Dupla",
"3" = "Tripla e mais",
"9" = NA)
),
PARTO = list(
type = "factor",
name_en = "deliv_type",
label_en = "Type of delivery",
map_en = c("1" = "Vaginal",
"2" = "Cesarean",
"9" = NA),
label = "Tipo de parto",
map = c("1" = "Vaginal",
"2" = "Cesáreo",
"9" = NA)
),
CONSULTAS = list(
type = "factor",
name_en = "n_prenatal_visit",
label_en = "Number of prenatal visits",
map_en = c("1" = "None",
"2" = "1 - 3",
"3" = "4 - 6",
"4" = "7+",
"9" = NA),
label = "Número de consultas de pré-natal",
map = c("1" = "Nenhuma",
"2" = "de 1 a 3",
"3" = "de 4 a 6",
"4" = "7 e mais",
"9" = NA)
),
DTNASC = list(
type = "date",
name_en = "birth_date",
label_en = "Date of birth in ddmmyyyy format",
label = "Data do nascimento, no formato ddmmaaaa"
),
HORANASC = list(
type = "character", # for now
name_en = "birth_time",
label_en = "Time of birth",
label = "Hora do nascimento"
),
SEXO = list(
type = "factor",
name_en = "sex",
label_en = "Sex",
map_en = c("1" = "Male",
"2" = "Female",
"0" = NA),
label = "Sexo",
map = c("1" = "Masculino",
"2" = "Feminino",
"0" = NA)
),
APGAR1 = list(
type = "factor",
name_en = "apgar1",
label_en = "Apgar in the first minute (00 to 10)",
label = "Apgar no primeiro minuto (00 a 10)"
),
APGAR5 = list(
type = "factor",
name_en = "apgar5",
label_en = "Apgar in the fifth minute (00 to 10)",
label = "Apgar no quinto minuto (00 a 10)"
),
RACACOR = list(
type = "factor",
name_en = "race",
label_en = "Race / Color",
map_en = c("1" = "White",
"2" = "Black",
"3" = "Asian",
"4" = "Multiracial",
"5" = "Indigenous"),
label = "Raça/Cor",
map = c("1" = "Branca",
"2" = "Preta",
"3" = "Amarela",
"4" = "Parda",
"5" = "Indígena")
),
PESO = list(
type = "numeric",
name_en = "brthwt_g",
label_en = "Birth weight, in grams",
label = "Peso ao nascer, em gramas"
),
IDANOMAL = list(
type = "factor",
name_en = "cong_anom",
label_en = "Congenital anomaly",
map_en = c("1" = "Yes",
"2" = "No",
"9" = NA),
label = "Anomalia congênita",
map = c("1" = "Sim",
"2" = "Não",
"9" = NA)
),
CODANOMAL = list(
type = "character",
name_en = "cong_icd10",
label_en = "Code of congenital malformation or anomaly chromosome, according to ICD-10",
label = "Código de malformação congênita ou anomalia cromossômica, de acordo com a CID-10"
),
DTCADASTRO = list(
type = "date",
name_en = "sys_reg_date",
label_en = "Date of registration in the system",
label = "Data de cadastramento no sistema"
),
DTRECEBIM = list(
type = "date",
name_en = "rec_reg_date",
label_en = "Receipt date at central level, last date registry update",
label = "Data de recebimento no nível central, data da última atualização do registro"
),
CODINST = list(
type = "character",
name_en = "reg_gen_code",
label_en = "Registration generation installation code",
label = "Código da Instalação da geração dos Registros"
),
UFINFORM = list(
type = "character",
name_en = "rep_uf_code",
label_en = "UF code that reported the record",
label = "Código da UF que informou o registro"
)
)
# CODMUNCART
# RACACOR_RN
# DTDECLARAC
# PARIDADE
# RACACORN
# CODUFNATU
# ESCMAEAGR1
# CODCART
# DTREGCART
# ESCMAE2010
# NUMREGCART
# CONSPRENAT
# DTRECORIG
# TPROBSON
# CODMUNNATU
# CODPAISRES
# DIFDATA
# DTNASCMAE
# NATURALMAE
# NUMERODV
# NUMEROLOTE
# ORIGEM
# PREFIXODN
# QTDGESTANT
# QTDPARTCES
# QTDPARTNOR
# RACACORMAE
# SERIESCMAE
# STDNEPIDEM
# STDNNOVA
# VERSAOSIST
# 2005 differs at ESTCIVMAE
# 1: Solteira
# 2: Casada
# 3: Viuva
# 4: Separado judicialmente/Divorciado
# 5: União consensual (versões anteriores)
# 9: Ignorado
# 1: Single
# 2: Married
# 3: Widow
# 4: Separated judicially / Divorced
# 5: Consensual Union (previous versions)
# 9: Ignored
# http://svs.aids.gov.br/download/Dicionario_de_Dados_SINASC_tabela_DN.pdf
# DTULTMENST character 8 Date of last menstruation (DUM): dd mm yyyy
# SEMAGESTAC Weeks Gest Detail
# SEMADUM.CN V character 2 Number of weeks of gestation. Thread Tools Method Estimate
# TPMETODO.C NV character 2 Method used. Values: 1- Physical examination; 2- Another method; 9- Ignored.
# CODCRM character 10 Physician's CRM code.
# MESPRENAT 1st month Query
# MEGEST.CNV character 2 Month of gestation in which the prenatal period began
# TPAPRESENT character 2 Type of presentation of the RN. Values: 1- Cephalic; 2- Pelvic or breeding; 3- Transverse; 9- Ignored.
# STTRABPART character 1 Induced labor? Values: 1- Yes; 2- No; 3- No applies; 9- Ignored.
# STESPART Cesarea Ocorr Plymouth
# STPARTO.CNV character 1 Caesarean section occurred before labor began? Values: 1- Yes; 2- No; 3- Does not apply; 9- Ignored.
# TPNASCASSI Nas Assisted
# TPASSIST.CNV character 2 Nascimento was watched by? Values: 1- Medical; 2-Nurse / midwife; 3- Midwife; 4- Others; 9- Ignored.
# NOMERNASC character 70 Name of newborn
# NOMERESPO character 70 Name of person in charge
# TPFUNCRESP character 1 Type of function of the person in charge. Values: 1- Physician; 2- Nurses; 3- Midwife; 4- Employee of the registry; 5- Others. Dtrito
# CRESP character 70 Description of the function of the person responsible for completing the function for "5- Others".
# CODPROF character 15 Code of the profession, if the function is "5- Others".
# PROFISSION character 70 Name of the Professional if the function is "5- Others".
# COREN character 60 Name of nurse practitioner
# CODCOREN character 8 COREN Code
# TPDOCRESP character 1 Type of document of the person in charge. Values: 1-CNES; 2-CRM; 3- COREN; 4-RG; 5-CPF.
# NUDOCRESP character 20 Document number of the person in charge.
# CONSPRENAT Inquiries Detail
# SEMADUM.CN V character 2 Number of prenatal consultations
# ORGEMISER character 20 Description of the body issuing the document of the person responsible for fill.
# DTDECLARAC character 8 Date of declaration: dd mm yyyy
# ESCMAEAGR1 Escape Added ESCAGR1.CNV character 2 Education 2010 aggregate. Values: 00 - No Schooling; 01 - Fundamental I Incomplete; 02 - Fundamental I Complete; 03 - Fundamental II Incomplete; 04 - Fundamental II Complete; 05 - Secondary School Incomplete; 06 - High School Complete; 07 - Incomplete Superior; 08 - Superior Complete; 09 - Ignored; 10 - Fundamental I Incomplete or Nonspecific; 11 - Fundamental II Incomplete or Nonspecific; 12 - Teaching Medium Incomplete or Nonspecific.
# ESCMAEAGR2 character 2 --------------------
# TPROBSON Monitor cesarean
# ROBSON.CNV character 2 Robson Group Code generated by the system
# STDNEPIDEM DN epidemiological
# DNNOVA.CNV character 1 Epidemiological DO status. Values: 1 - YES; 0 - NO.
# STDNNOVA New DN model
# DNNOVA.CNV character 1 New DO status. Values: 1 - YES; 0 - NO.
# ## these are new starting in 2010 data
# NOMEPAI = list(
# type = "character",
# name_en = "f_name",
# label_en = "Father's name",
# label = "Nome do pai"
# ),
# IDADEPAI = list(
# type = "character",
# name_en = "f_age",
# label_en = "Father's age",
# label = "Idade do pai"
# ),
# DTULTMENST = list(
# type = "character",
# name_en = "menst_date",
# label_en = "Date of last menstruation in in ddmmyyyy format",
# map_en = c(),
# label = "Data da última menstruação (DUM): dd mm aaaa",
# map = c()
# ),
# SEMAGESTAC = list(
# type = "character",
# name_en = "gage_weeks",
# label_en = "Number of weeks of gestation",
# label = "Número de semanas de gestação"
# ),
# TPMETESTIM = list(
# type = "character",
# name_en = "gage_method",
# label_en = "Method used (to estimate gestational age??)",
# map_en = c("1" = "Physical examination",
# "2" = "Another method"),
# label = "Método utilizado",
# map = c("1" = "Exame físico",
# "2" = "Outro método",
# "9" = NA)
# ),
# CODCRM = list(
# type = "character",
# name_en = "crm_code",
# label_en = "Physician's CRM code",
# label = "Código do CRM do médico"
# ),
# MESPRENAT = list(
# type = "character",
# name_en = "prenat_gmonth",
# label_en = "Month of gestation in which the prenatal period began",
# label = "Mês de gestação em que iniciou o pré‐natal"
# ),
# TPAPRESENT = list(
# type = "character",
# name_en = "present_type",
# label_en = "Type of presentation of the RN",
# map_en = c("1" = "Cephalic",
# "2" = "Pelvic or breeding",
# "3" = "Transverse",
# "9" = NA),
# label = "Tipo de apresentação do RN",
# map = c("1" = "Cefálico",
# "2" = "Pélvica ou podálica",
# "3" = "Transversa",
# "9" = NA)
# ),
# STTRABPART = list(
# type = "character",
# name_en = "induced",
# label_en = "Induced labor?",
# map_en = c("1" = "Yes",
# "2" = "No",
# "3" = "Not applicable",
# "9" = NA),
# label = "Trabalho de parto induzido?",
# map = c("1" = "Sim",
# "2" = "Não",
# "3" = "Não se aplica",
# "9" = NA)
# ),
# STCESPARTO = list(
# type = "character",
# name_en = "",
# label_en = "",
# map_en = c(),
# label = "Cesárea ocorreu antes do trabalho de parto iniciar?",
# map = c("1" = "Sim",
# "2" = "Não",
# "3" = "Não se aplica",
# "9" = NA)
# ),
# TPNASCASSI = list(
# type = "character",
# name_en = "assist",
# label_en = "Birth was assisted by?",
# map_en = c("1" = "Medical",
# "2" = "Nurse / midwife",
# "3" = "Midwife",
# "4" = "Others",
# "9" = "Ignored."),
# label = "Nascimento foi assistido por?",
# map = c("1" = "Médico",
# "2" = "Enfermeira/obstetriz",
# "3" = "Parteira",
# "4" = "Outros",
# "9" = NA)
# ),
# # QUESTION: obstetriz and obstetriz both translate as widwife
# NOMERNASC = list(
# type = "character",
# name_en = "n_name",
# label_en = "Name of newborn",
# label = "Nome do recém‐nascido"
# ),
# NOMERESPO = list(
# type = "character",
# name_en = "ic_name",
# label_en = "Name of person in charge",
# label = "Nome do responsável pelo preenchimento"
# ),
# TPFUNCRESP = list(
# type = "character",
# name_en = "ic_role",
# label_en = "Role of the person in charge",
# map_en = c("1" = "Physician",
# "2" = "Nurse",
# "3" = "Midwife",
# "4" = "Employee of the registry",
# "5" = "Others"),
# label = "Tipo de função do responsável pelo preenchimento",
# map = c("1" = "Médico",
# "2" = "Enfermeiro",
# "3" = "Parteira",
# "4" = "Funcionário do cartório",
# "5" = "Outros")
# ),
# DSFUNCRESP = list(
# type = "character",
# name_en = "ic_role_desc",
# label_en = "Description of the role of the person for 'ic_role' if 'Other' was specified",
# label = "Descrição da função do responsável pelo preenchimento, se a função for “5– Outros”"
# ),
# CODPROF = list(
# type = "character",
# name_en = "ic_role_prof",
# label_en = "Code of the profession for 'ic_role' if 'Other' was specified",
# label = "Código da profissão, se a função for “5– Outros”"
# ),
# PROFISSION = list(
# type = "character",
# name_en = "ic_role_name",
# label_en = "Name of the profession for 'ic_role' if 'Other' was specified",
# label = "Nome do Profissional, se a função for “5– Outros”"
# ),
# COREN = list(
# type = "character",
# name_en = "np_name",
# label_en = "Name of nurse practitioner",
# label = "Nome do profissional enfermeiro"
# ),
# CODCOREN = list(
# type = "character",
# name_en = "np_code",
# label_en = "Nurse practitioner code",
# label = "Código do COREN"
# ),
# TPDOCRESP = list(
# type = "character",
# name_en = "np_doc_type",
# label_en = "Type of document of the person in charge",
# map_en = c("1" = "CNES",
# "2" = "CRM",
# "3" = " COREN",
# "4" = "RG",
# "5" = "CPF"),
# label = "Tipo do documento do responsável",
# map = c("1" = "CNES",
# "2" = "CRM",
# "3" = "COREN",
# "4" = "RG",
# "5" = "CPF")
# )