-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrandom_walk_art_gradient.m
143 lines (118 loc) · 4.77 KB
/
random_walk_art_gradient.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
% Allow user to input size of image, color map, directory to save image
close all
clearvars
prompt = {'Enter size of box region (x, y)',...
'Enter colormap name (See https://www.mathworks.com/help/matlab/ref/colormap.html for list)',...
'Invert color map (y or n)',...
'Enter line thickness',...
'Background color as normalized RGB triplet',...
'Path of directory to save image',...
'Resolution of image in dpi'};
dlgtitle = 'Required Inputs';
dims = [1 67];
definput = {'200, 150','hsv','n','1','0 0 0','~/Desktop/','300'};
answer = inputdlg(prompt,dlgtitle,dims,definput);
axis_dim = str2num(answer{1});
color_map = answer{2};
if isequal(answer{3},'y')
invert_cm=1;
else
invert_cm=0;
end
thickness = str2num(answer{4})*0.5;
backgrd_color=str2num(answer{5});
dir = answer{6};
res = answer{7};
clearvars dlgtitle dims definput prompt answer
fig=figure('Visible', 'off');
% Determine the number of walkers and how many steps each will take.
area_of_image = axis_dim(1)*axis_dim(2);
max_walkers = ceil((area_of_image)^(1/2.2));
max_steps = area_of_image/max_walkers*ceil(log10(area_of_image));
% Generate size and inversion of colormap
if invert_cm == 1
cm = flipud(colormap([color_map,'(',num2str(max_walkers),')']));
else
cm = colormap([color_map,'(',num2str(max_walkers),')']);
end
% Possible new locations surrounding the current location
% Do not allow for diagonal steps later, but here for convience
step = [[-1 -1];[0 -1];[1 -1];[-1 0];[0 0];[1 0];[-1 1];[0 1];[1 1]];
% Add two to each dimension for ease in calculation. True walking region is
% centered in the matrix (i.e., one extra column and row at both ends).
walker_matrix = zeros(axis_dim+2);
walker_matrix(:,1)=1;
walker_matrix(1,:)=1;
walker_matrix(:,axis_dim(2)+2)=1;
walker_matrix(axis_dim(1)+2,:)=1;
% Walkers will start away from an edge and will stop once they reach an
% edge. They will also not be allowed to walk on a location that has
% previously been walked by a different walker.
% Begin random walk
for i = 1:max_walkers
% Each walker must start away from the edge at a location not having
% already been walked
for k=2:axis_dim(1)+1-10
for l=2:axis_dim(2)+1
if sum(walker_matrix(k:7+k,l)) == 0
startx=k;
starty=l;
break
end
end
if sum(walker_matrix(k:7+k,l)) == 0
break
end
end
%[startx,starty]=ind2sub(size(walker_matrix),starting_loc(ceil(rand*length(starting_loc))));
start=[startx,starty];
current_loc = start;
walking_path = current_loc;
% Walker will now walk till they can take no more steps
for j = 1:max_steps
% Select neighboring locations that the walker can travel to speed
% up process. Also do not allow walker to stand still.
neighbor_loc = find(walker_matrix(current_loc(1)-1:current_loc(1)+1,current_loc(2)-1:current_loc(2)+1) == 0);
% Odd locations will be diagonals and current location
neighbor_loc = neighbor_loc(mod(neighbor_loc,2) == 0);
% If at an edge, do not allow to walk out of walking region.
if current_loc(1)-1 == 1
neighbor_loc = neighbor_loc(neighbor_loc ~= 4);
end
if current_loc(2)-1 == 1
neighbor_loc = neighbor_loc(neighbor_loc ~= 2);
end
if current_loc(1)+1 == axis_dim(1)+2
neighbor_loc = neighbor_loc(neighbor_loc ~= 6);
end
if current_loc(2)+1 == axis_dim(2)+2
neighbor_loc = neighbor_loc(neighbor_loc ~= 8);
end
% If the walker cannot take a step, then end their walk
if isempty(neighbor_loc)
break
end
% Pick one of the open neighboring cells and step to it.
step_loc = ceil(rand * length(neighbor_loc));
new_loc = current_loc + step(neighbor_loc(step_loc),:);
% If the step goes out of bounds then stop
if new_loc(1) == axis_dim(1)+2
break
end
current_loc = new_loc;
walking_path = [walking_path; current_loc];
end
% Record locations walker has walked
for j = 1:size(walking_path,1)
walker_matrix(walking_path(j,1),walking_path(j,2)) = 1;
end
% Plot the walked path
hold on
plot(walking_path(:,1),walking_path(:,2),'Color',cm(i,:),'LineWidth',thickness)
clearvars walking_path
end
% Clean up figure layout for saving
resolution=['-r',res];
set(gca,'XColor', 'none','YColor','none','Position',[0 0 1 1],'Xlim',[1 axis_dim(1)+2],'Ylim',[1 axis_dim(2)+2],'Color',backgrd_color)
set(gcf,'Color',backgrd_color,'InvertHardCopy', 'off','Position', [0, 1000, axis_dim(1), axis_dim(2)])
print(fig,[dir,'Random_walk_art_gradient.png'],'-dpng',resolution)