forked from odegeasslbc/FastGAN-pytorch
-
Notifications
You must be signed in to change notification settings - Fork 1
/
models.py
385 lines (289 loc) · 13.4 KB
/
models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
import torch
import torch.nn as nn
from torch.nn.utils import spectral_norm
import torch.nn.functional as F
import random
seq = nn.Sequential
def weights_init(m):
classname = m.__class__.__name__
if classname.find('Conv') != -1:
try:
m.weight.data.normal_(0.0, 0.02)
except:
pass
elif classname.find('BatchNorm') != -1:
m.weight.data.normal_(1.0, 0.02)
m.bias.data.fill_(0)
def conv2d(*args, **kwargs):
return spectral_norm(nn.Conv2d(*args, **kwargs))
def convTranspose2d(*args, **kwargs):
return spectral_norm(nn.ConvTranspose2d(*args, **kwargs))
def batchNorm2d(*args, **kwargs):
return nn.BatchNorm2d(*args, **kwargs)
def linear(*args, **kwargs):
return spectral_norm(nn.Linear(*args, **kwargs))
class PixelNorm(nn.Module):
def forward(self, input):
return input * torch.rsqrt(torch.mean(input ** 2, dim=1, keepdim=True) + 1e-8)
class Reshape(nn.Module):
def __init__(self, shape):
super().__init__()
self.target_shape = shape
def forward(self, feat):
batch = feat.shape[0]
return feat.view(batch, *self.target_shape)
class GLU(nn.Module):
def forward(self, x):
nc = x.size(1)
assert nc % 2 == 0, 'channels dont divide 2!'
nc = int(nc/2)
return x[:, :nc] * torch.sigmoid(x[:, nc:])
class NoiseInjection(nn.Module):
def __init__(self):
super().__init__()
self.weight = nn.Parameter(torch.zeros(1), requires_grad=True)
def forward(self, feat, noise=None):
if noise is None:
batch, _, height, width = feat.shape
noise = torch.randn(batch, 1, height, width).to(feat.device)
return feat + self.weight * noise
class Swish(nn.Module):
def forward(self, feat):
return feat * torch.sigmoid(feat)
class SEBlock(nn.Module):
def __init__(self, ch_in, ch_out):
super().__init__()
self.main = nn.Sequential( nn.AdaptiveAvgPool2d(4),
conv2d(ch_in, ch_out, 4, 1, 0, bias=False), Swish(),
conv2d(ch_out, ch_out, 1, 1, 0, bias=False), nn.Sigmoid() )
def forward(self, feat_small, feat_big):
return feat_big * self.main(feat_small)
class InitLayer(nn.Module):
def __init__(self, nz, channel):
super().__init__()
self.init = nn.Sequential(
convTranspose2d(nz, channel*2, 4, 1, 0, bias=False),
batchNorm2d(channel*2), GLU() )
def forward(self, noise):
noise = noise.view(noise.shape[0], -1, 1, 1)
return self.init(noise)
def UpBlock(in_planes, out_planes):
block = nn.Sequential(
nn.Upsample(scale_factor=2, mode='nearest'),
conv2d(in_planes, out_planes*2, 3, 1, 1, bias=False),
#convTranspose2d(in_planes, out_planes*2, 4, 2, 1, bias=False),
batchNorm2d(out_planes*2), GLU())
return block
def UpBlockComp(in_planes, out_planes):
block = nn.Sequential(
nn.Upsample(scale_factor=2, mode='nearest'),
conv2d(in_planes, out_planes*2, 3, 1, 1, bias=False),
#convTranspose2d(in_planes, out_planes*2, 4, 2, 1, bias=False),
NoiseInjection(),
batchNorm2d(out_planes*2), GLU(),
conv2d(out_planes, out_planes*2, 3, 1, 1, bias=False),
NoiseInjection(),
batchNorm2d(out_planes*2), GLU()
)
return block
class Generator(nn.Module):
def __init__(self, ngf=64, nz=100, nc=3, im_size=1024):
super(Generator, self).__init__()
nfc_multi = {4:16, 8:8, 16:4, 32:2, 64:2, 128:1, 256:0.5, 512:0.25, 1024:0.125}
nfc = {}
for k, v in nfc_multi.items():
nfc[k] = int(v*ngf)
self.im_size = im_size
self.init = InitLayer(nz, channel=nfc[4])
self.feat_8 = UpBlockComp(nfc[4], nfc[8])
self.feat_16 = UpBlock(nfc[8], nfc[16])
self.feat_32 = UpBlockComp(nfc[16], nfc[32])
self.feat_64 = UpBlock(nfc[32], nfc[64])
self.feat_128 = UpBlockComp(nfc[64], nfc[128])
self.feat_256 = UpBlock(nfc[128], nfc[256])
self.se_64 = SEBlock(nfc[4], nfc[64])
self.se_128 = SEBlock(nfc[8], nfc[128])
self.se_256 = SEBlock(nfc[16], nfc[256])
self.to_128 = conv2d(nfc[128], nc, 1, 1, 0, bias=False)
self.to_big = conv2d(nfc[im_size], nc, 3, 1, 1, bias=False)
if im_size > 256:
self.feat_512 = UpBlockComp(nfc[256], nfc[512])
self.se_512 = SEBlock(nfc[32], nfc[512])
if im_size > 512:
self.feat_1024 = UpBlock(nfc[512], nfc[1024])
def forward(self, input):
feat_4 = self.init(input)
feat_8 = self.feat_8(feat_4)
feat_16 = self.feat_16(feat_8)
feat_32 = self.feat_32(feat_16)
feat_64 = self.se_64( feat_4, self.feat_64(feat_32) )
feat_128 = self.se_128( feat_8, self.feat_128(feat_64) )
feat_256 = self.se_256( feat_16, self.feat_256(feat_128) )
if self.im_size == 256:
return [self.to_big(feat_256), self.to_128(feat_128)]
feat_512 = self.se_512( feat_32, self.feat_512(feat_256) )
if self.im_size == 512:
return [self.to_big(feat_512), self.to_128(feat_128)]
feat_1024 = self.feat_1024(feat_512)
im_128 = torch.tanh(self.to_128(feat_128))
im_1024 = torch.tanh(self.to_big(feat_1024))
return [im_1024, im_128]
class DownBlock(nn.Module):
def __init__(self, in_planes, out_planes):
super(DownBlock, self).__init__()
self.main = nn.Sequential(
conv2d(in_planes, out_planes, 4, 2, 1, bias=False),
batchNorm2d(out_planes), nn.LeakyReLU(0.2, inplace=True),
)
def forward(self, feat):
return self.main(feat)
class DownBlockComp(nn.Module):
def __init__(self, in_planes, out_planes):
super(DownBlockComp, self).__init__()
self.main = nn.Sequential(
conv2d(in_planes, out_planes, 4, 2, 1, bias=False),
batchNorm2d(out_planes), nn.LeakyReLU(0.2, inplace=True),
conv2d(out_planes, out_planes, 3, 1, 1, bias=False),
batchNorm2d(out_planes), nn.LeakyReLU(0.2)
)
self.direct = nn.Sequential(
nn.AvgPool2d(2, 2),
conv2d(in_planes, out_planes, 1, 1, 0, bias=False),
batchNorm2d(out_planes), nn.LeakyReLU(0.2))
def forward(self, feat):
return (self.main(feat) + self.direct(feat)) / 2
class Discriminator(nn.Module):
def __init__(self, ndf=64, nc=3, im_size=512):
super(Discriminator, self).__init__()
self.ndf = ndf
self.im_size = im_size
nfc_multi = {4:16, 8:16, 16:8, 32:4, 64:2, 128:1, 256:0.5, 512:0.25, 1024:0.125}
nfc = {}
for k, v in nfc_multi.items():
nfc[k] = int(v*ndf)
if im_size == 1024:
self.down_from_big = nn.Sequential(
conv2d(nc, nfc[1024], 4, 2, 1, bias=False),
nn.LeakyReLU(0.2, inplace=True),
conv2d(nfc[1024], nfc[512], 4, 2, 1, bias=False),
batchNorm2d(nfc[512]),
nn.LeakyReLU(0.2, inplace=True))
elif im_size == 512:
self.down_from_big = nn.Sequential(
conv2d(nc, nfc[512], 4, 2, 1, bias=False),
nn.LeakyReLU(0.2, inplace=True) )
elif im_size == 256:
self.down_from_big = nn.Sequential(
conv2d(nc, nfc[512], 3, 1, 1, bias=False),
nn.LeakyReLU(0.2, inplace=True) )
self.down_4 = DownBlockComp(nfc[512], nfc[256])
self.down_8 = DownBlockComp(nfc[256], nfc[128])
self.down_16 = DownBlockComp(nfc[128], nfc[64])
self.down_32 = DownBlockComp(nfc[64], nfc[32])
self.down_64 = DownBlockComp(nfc[32], nfc[16])
self.rf_big = nn.Sequential(
conv2d(nfc[16] , nfc[8], 1, 1, 0, bias=False),
batchNorm2d(nfc[8]), nn.LeakyReLU(0.2, inplace=True),
conv2d(nfc[8], 1, 4, 1, 0, bias=False))
self.se_2_16 = SEBlock(nfc[512], nfc[64])
self.se_4_32 = SEBlock(nfc[256], nfc[32])
self.se_8_64 = SEBlock(nfc[128], nfc[16])
self.down_from_small = nn.Sequential(
conv2d(nc, nfc[256], 4, 2, 1, bias=False),
nn.LeakyReLU(0.2, inplace=True),
DownBlock(nfc[256], nfc[128]),
DownBlock(nfc[128], nfc[64]),
DownBlock(nfc[64], nfc[32]), )
self.rf_small = conv2d(nfc[32], 1, 4, 1, 0, bias=False)
self.decoder_big = SimpleDecoder(nfc[16], nc)
self.decoder_part = SimpleDecoder(nfc[32], nc)
self.decoder_small = SimpleDecoder(nfc[32], nc)
def forward(self, imgs, label, part=None):
if type(imgs) is not list:
imgs = [F.interpolate(imgs, size=self.im_size), F.interpolate(imgs, size=128)]
feat_2 = self.down_from_big(imgs[0])
feat_4 = self.down_4(feat_2)
feat_8 = self.down_8(feat_4)
feat_16 = self.down_16(feat_8)
feat_16 = self.se_2_16(feat_2, feat_16)
feat_32 = self.down_32(feat_16)
feat_32 = self.se_4_32(feat_4, feat_32)
feat_last = self.down_64(feat_32)
feat_last = self.se_8_64(feat_8, feat_last)
#rf_0 = torch.cat([self.rf_big_1(feat_last).view(-1),self.rf_big_2(feat_last).view(-1)])
#rff_big = torch.sigmoid(self.rf_factor_big)
rf_0 = self.rf_big(feat_last).view(-1)
feat_small = self.down_from_small(imgs[1])
#rf_1 = torch.cat([self.rf_small_1(feat_small).view(-1),self.rf_small_2(feat_small).view(-1)])
rf_1 = self.rf_small(feat_small).view(-1)
if label=='real':
rec_img_big = self.decoder_big(feat_last)
rec_img_small = self.decoder_small(feat_small)
assert part is not None
rec_img_part = None
if part==0:
rec_img_part = self.decoder_part(feat_32[:,:,:8,:8])
if part==1:
rec_img_part = self.decoder_part(feat_32[:,:,:8,8:])
if part==2:
rec_img_part = self.decoder_part(feat_32[:,:,8:,:8])
if part==3:
rec_img_part = self.decoder_part(feat_32[:,:,8:,8:])
return torch.cat([rf_0, rf_1]) , [rec_img_big, rec_img_small, rec_img_part]
return torch.cat([rf_0, rf_1])
class SimpleDecoder(nn.Module):
"""docstring for CAN_SimpleDecoder"""
def __init__(self, nfc_in=64, nc=3):
super(SimpleDecoder, self).__init__()
nfc_multi = {4:16, 8:8, 16:4, 32:2, 64:2, 128:1, 256:0.5, 512:0.25, 1024:0.125}
nfc = {}
for k, v in nfc_multi.items():
nfc[k] = int(v*32)
def upBlock(in_planes, out_planes):
block = nn.Sequential(
nn.Upsample(scale_factor=2, mode='nearest'),
conv2d(in_planes, out_planes*2, 3, 1, 1, bias=False),
batchNorm2d(out_planes*2), GLU())
return block
self.main = nn.Sequential( nn.AdaptiveAvgPool2d(8),
upBlock(nfc_in, nfc[16]) ,
upBlock(nfc[16], nfc[32]),
upBlock(nfc[32], nfc[64]),
upBlock(nfc[64], nfc[128]),
conv2d(nfc[128], nc, 3, 1, 1, bias=False),
nn.Tanh() )
def forward(self, input):
# input shape: c x 4 x 4
return self.main(input)
from random import randint
def random_crop(image, size):
h, w = image.shape[2:]
ch = randint(0, h-size-1)
cw = randint(0, w-size-1)
return image[:,:,ch:ch+size,cw:cw+size]
class TextureDiscriminator(nn.Module):
def __init__(self, ndf=64, nc=3, im_size=512):
super(TextureDiscriminator, self).__init__()
self.ndf = ndf
self.im_size = im_size
nfc_multi = {4:16, 8:8, 16:8, 32:4, 64:2, 128:1, 256:0.5, 512:0.25, 1024:0.125}
nfc = {}
for k, v in nfc_multi.items():
nfc[k] = int(v*ndf)
self.down_from_small = nn.Sequential(
conv2d(nc, nfc[256], 4, 2, 1, bias=False),
nn.LeakyReLU(0.2, inplace=True),
DownBlock(nfc[256], nfc[128]),
DownBlock(nfc[128], nfc[64]),
DownBlock(nfc[64], nfc[32]), )
self.rf_small = nn.Sequential(
conv2d(nfc[16], 1, 4, 1, 0, bias=False))
self.decoder_small = SimpleDecoder(nfc[32], nc)
def forward(self, img, label):
img = random_crop(img, size=128)
feat_small = self.down_from_small(img)
rf = self.rf_small(feat_small).view(-1)
if label=='real':
rec_img_small = self.decoder_small(feat_small)
return rf, rec_img_small, img
return rf