-
-
Notifications
You must be signed in to change notification settings - Fork 38
/
plruby.rd
1571 lines (1126 loc) · 42.3 KB
/
plruby.rd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
=begin
= PL/Ruby
* ((<Defining function in PL Ruby>))
* ((<Function returning SET (SFRM Materialize)>))
* ((<Function returning SET (ExprMultiResult)>))
* ((<Trigger procedures in PL Ruby>))
* ((<plruby_singleton_methods>))
* ((<Conversion>))
* ((<Class and modules>))
* ((<module PL>)) : general module
* ((<class PL::Plan>)) : class for prepared plans
* ((<class PL::Cursor>)) : class for cursors
* ((<class PL::Transaction>)) : class for transactions (8.0)
* ((<class BitString>))
* ((<class Tinterval>))
* ((<class NetAddr>))
* ((<class MacAddr>))
* ((<class Box>))
* ((<class Circle>))
* ((<class Path>))
* ((<class Point>))
* ((<class Polygon>))
* ((<class Segment>))
PL/Ruby is a loadable procedural language for the PostgreSQL database
system that enables the Ruby language to create functions and trigger
procedures.
Functions and triggers are defined as singleton methods of the module
PLtemp.
= WARNING
((*if PL/Ruby was compiled with ((%--disable-conversion%)),
all arguments (to the function or the triggers) are passed as string
values, except for NULL values represented by ((%Qnil%)).*))
((*In this case you must explicitely call a conversion function (like to_i)
if you want to use an argument as an integer*))
== Defining function in PL Ruby
To create a function in the PL/Ruby language use the syntax
CREATE FUNCTION funcname(arguments_type) RETURNS type AS '
# PL/Ruby function body
' LANGUAGE 'plruby';
when calling the function in a query, the arguments are given
in the array ((%args%)). To create a little max
function returning the higher of two int4 values write :
CREATE FUNCTION ruby_max(int4, int4) RETURNS int4 AS '
if args[0] > args[1]
return args[0]
else
return args[1]
end
' LANGUAGE 'plruby';
Tuple arguments are given as hash. Here is an example that defines
the overpaid_2 function (as found in the older Postgres documentation)
in PL/Ruby.
CREATE FUNCTION overpaid_2 (EMP) RETURNS bool AS '
args[0]["salary"] > 200000 ||
(args[0]["salary"] > 100000 && args[0]["age"] < 30)
' LANGUAGE 'plruby';
=== Warning : with PostgreSQL >= 7.4 "array" are given as a ruby Array
For example to define a function (int4[], int4) and return int4[],
in version < 7.4 you write
CREATE FUNCTION ruby_int4_accum(_int4, int4) RETURNS _int4 AS '
if /\\{(\\d+),(\\d+)\\}/ =~ args[0]
a, b = $1, $2
newsum = a + args[1]
newcnt = b + 1
else
raise "unexpected value #{args[0]}"
end
"{#{newsum},#{newcnt}}"
' LANGUAGE 'plruby';
This must now (>= 7.4) be written
CREATE FUNCTION ruby_int4_accum(_int4, int4) RETURNS _int4 AS '
a = args[0]
[a[0] + args[1], a[1] + 1]
' LANGUAGE 'plruby';
=== Release PostgreSQL 8.0
With this version, plruby can have named arguments and the previous functions
can be written
CREATE FUNCTION ruby_max(a int4, b int4) RETURNS int4 AS '
if a > b
a
else
b
end
' LANGUAGE 'plruby';
CREATE FUNCTION overpaid_2 (emp EMP) RETURNS bool AS '
emp["salary"] > 200000 ||
(emp["salary"] > 100000 && emp["age"] < 30)
' LANGUAGE 'plruby';
With this version, you can also use transaction. For example
plruby_test=# create table tu (a int, b int);
CREATE TABLE
plruby_test=# create or replace function tt(abort bool) returns bool as '
plruby_test'# transaction do |txn|
plruby_test'# PL.exec("insert into tu values (1, 2)")
plruby_test'# transaction do |txn1|
plruby_test'# PL.exec("insert into tu values (3, 4)")
plruby_test'# txn1.abort
plruby_test'# end
plruby_test'# PL.exec("insert into tu values (5, 6)")
plruby_test'# txn.abort if abort
plruby_test'# end
plruby_test'# abort
plruby_test'# ' language 'plruby';
CREATE FUNCTION
plruby_test=#
plruby_test=# select tt(true);
tt
----
t
(1 row)
plruby_test=# select * from tu;
a | b
---+---
(0 rows)
plruby_test=# select tt(false);
tt
----
f
(1 row)
plruby_test=# select * from tu;
a | b
---+---
1 | 2
5 | 6
(2 rows)
plruby_test=#
== Function returning SET (SFRM Materialize)
The return type must be declared as SETOF
The function must call ((%yield%)) to return rows or return a String which
must be a valid SELECT statement
For example to concatenate 2 rows create the function
plruby_test=# CREATE FUNCTION tu(varchar) RETURNS setof record
plruby_test-# AS '
plruby_test'# size = PL.column_name(args[0]).size
plruby_test'# res = nil
plruby_test'# PL::Plan.new("select * from #{args[0]}",
plruby_test'# "block" => 50).each do |row|
plruby_test'# if res.nil?
plruby_test'# res = row.values
plruby_test'# else
plruby_test'# res.concat row.values
plruby_test'# yield res
plruby_test'# res = nil
plruby_test'# end
plruby_test'# end
plruby_test'# if res
plruby_test'# res.concat Array.new(size)
plruby_test'# yield res
plruby_test'# end
plruby_test'# ' language 'plruby';
CREATE FUNCTION
plruby_test=#
plruby_test=# select * from tt;
a | b
---+----
1 | 2
3 | 4
5 | 6
7 | 8
9 | 10
(5 rows)
plruby_test=# select * from tu('tt') as tbl(a int, b int, c int, d int);
a | b | c | d
---+----+---+---
1 | 2 | 3 | 4
5 | 6 | 7 | 8
9 | 10 | |
(3 rows)
plruby_test=#
== Function returning SET (ExprMultiResult)
The return type must be declared as SETOF
The function is called until it returns nil
The method PL#context and PL#context= give the possibility to store information
between the call
For example
plruby_test=# create or replace function vv(int) returns setof int as '
plruby_test'# i = PL.context || 0
plruby_test'# if i >= args[0]
plruby_test'# nil
plruby_test'# else
plruby_test'# PL.context = i + 1
plruby_test'# end
plruby_test'# ' language plruby;
CREATE FUNCTION
plruby_test=#
plruby_test=# select * from uu;
b
---
2
(1 row)
plruby_test=#
plruby_test=# select *,vv(3) from uu;
b | vv
---+----
2 | 1
2 | 2
2 | 3
(3 rows)
plruby_test=#
== Trigger procedures in PL Ruby
Trigger procedures are defined in Postgres as functions without
arguments and a return type of trigger. In PL/Ruby the procedure is
called with 4 arguments :
:new (hash, tainted)
an hash containing the values of the new table row on INSERT/UPDATE
actions, or empty on DELETE.
:old (hash, tainted)
an hash containing the values of the old table row on UPDATE/DELETE
actions, or empty on INSERT
:args (array, tainted, frozen)
An array of the arguments to the procedure as given in the CREATE
TRIGGER statement
:tg (hash, tainted, frozen)
The following keys are defined
:name
The name of the trigger from the CREATE TRIGGER statement.
:relname
The name of the relation who has fired the trigger
:relid
The object ID of the table that caused the trigger procedure to be invoked.
:relatts
An array containing the name of the tables field.
:when
The constant ((%PL::BEFORE%)), ((%PL::AFTER%)) or
((%PL::UNKNOWN%)) depending on the event of the trigger call.
:level
The constant ((%PL::ROW%)) or ((%PL::STATEMENT%))
depending on the event of the trigger call.
:op
The constant ((%PL::INSERT%)), ((%PL::UPDATE%)) or
((%PL::DELETE%)) depending on the event of the trigger call.
The return value from a trigger procedure is one of the constant
((%PL::OK%)) or ((%PL::SKIP%)), or an hash. If the
return value is ((%PL::OK%)), the normal operation
(INSERT/UPDATE/DELETE) that fired this trigger will take
place. Obviously, ((%PL::SKIP%)) tells the trigger manager to
silently suppress the operation. The hash tells
PL/Ruby to return a modified row to the trigger manager that will be
inserted instead of the one given in ((%new%)) (INSERT/UPDATE
only). Needless to say that all this is only meaningful when the
trigger is BEFORE and FOR EACH ROW.
Here's a little example trigger procedure that forces an integer
value in a table to keep track of the # of updates that are performed
on the row. For new row's inserted, the value is initialized to 0 and
then incremented on every update operation :
CREATE FUNCTION trigfunc_modcount() RETURNS TRIGGER AS '
case tg["op"]
when PL::INSERT
new[args[0]] = 0
when PL::UPDATE
new[args[0]] = old[args[0]] + 1
else
return PL::OK
end
new
' LANGUAGE 'plruby';
CREATE TABLE mytab (num int4, modcnt int4, descr text);
CREATE TRIGGER trig_mytab_modcount BEFORE INSERT OR UPDATE ON mytab
FOR EACH ROW EXECUTE PROCEDURE trigfunc_modcount('modcnt');
A more complex example (extract from test_setup.sql in the distribution)
which use the global variable ((%$Plans%)) to store a prepared
plan
create function trig_pkey2_after() returns trigger as '
if ! $Plans.key?("plan_dta2_upd")
$Plans["plan_dta2_upd"] =
PL::Plan.new("update T_dta2
set ref1 = $3, ref2 = $4
where ref1 = $1 and ref2 = $2",
["int4", "varchar", "int4", "varchar" ]).save
$Plans["plan_dta2_del"] =
PL::Plan.new("delete from T_dta2
where ref1 = $1 and ref2 = $2",
["int4", "varchar"]).save
end
old_ref_follow = false
old_ref_delete = false
case tg["op"]
when PL::UPDATE
new["key2"] = new["key2"].upcase
old_ref_follow = (new["key1"] != old["key1"]) ||
(new["key2"] != old["key2"])
when PL::DELETE
old_ref_delete = true
end
if old_ref_follow
n = $Plans["plan_dta2_upd"].exec([old["key1"], old["key2"], new["key1"],
new["key2"]])
warn "updated #{n} entries in T_dta2 for new key in T_pkey2" if n != 0
end
if old_ref_delete
n = $Plans["plan_dta2_del"].exec([old["key1"], old["key2"]])
warn "deleted #{n} entries from T_dta2" if n != 0
end
PL::OK
' language 'plruby';
create trigger pkey2_after after update or delete on T_pkey2
for each row execute procedure
trig_pkey2_after();
== plruby_singleton_methods
Sometime it can be usefull to define methods (in pure Ruby) which can be
called from a PL/Ruby function or a PL/Ruby trigger.
In this case, you have 2 possibilities
* the "stupid" way (({:-) :-) :-)}))
just close the current definition of the function (or trigger) with a
(({end})) and define your singleton method without the final (({end}))
Here a small and useless example
plruby_test=# CREATE FUNCTION tutu() RETURNS int4 AS '
plruby_test'# toto(1, 3) + toto(4, 4)
plruby_test'# end
plruby_test'#
plruby_test'# def PLtemp.toto(a, b)
plruby_test'# a + b
plruby_test'# ' LANGUAGE 'plruby';
CREATE
plruby_test=# select tutu();
tutu
----
12
(1 row)
plruby_test=#
* create a table plruby_singleton_methods with the columns (name, args, body)
At load time, PL/Ruby look if it exist a table plruby_singleton_methods and if
found try, for each row, to define singleton methods with the template :
def PLtemp.#{name} (#{args})
#{body}
end
The previous example can be written (you have a more complete example in
test/plp/test_setup.sql)
plruby_test=# SELECT * FROM plruby_singleton_methods;
name|args|body
----+----+-----
toto|a, b|a + b
(1 row)
plruby_test=# CREATE FUNCTION tutu() RETURNS int4 AS '
plruby_test'# toto(1, 3) + toto(4, 4)
plruby_test'# ' LANGUAGE 'plruby';
CREATE
plruby_test=# select tutu();
tutu
----
12
(1 row)
plruby_test=#
* Another example, if PLRuby was compiled with --enable-conversion and it
exist a column with the name '***' then it can create a singleton method
from a PLRuby function
plruby_test=# select * from plruby_singleton_methods;
name | args | body
------+------+------
*** | |
(1 row)
plruby_test=# create function add_value(int, int) returns int as '
plruby_test'# args[0] + args[1]
plruby_test'# ' language 'plruby';
CREATE FUNCTION
plruby_test=#
plruby_test=# select add_value(10, 2);
add_value
-----------
12
(1 row)
plruby_test=#
plruby_test=# create function add_one(int) returns int as '
plruby_test'# add_value(args[0], 1)
plruby_test'# ' language 'plruby';
CREATE FUNCTION
plruby_test=#
plruby_test=# select add_one(11);
add_one
---------
12
(1 row)
plruby_test=#
== Conversion
If the conversions was not disabled (--disable-conversion), the following
conversions are made
PostgreSQL Ruby
---------- ----
OID Fixnum
INT2OID Fixnum
INT4OID Fixnum
INT8OID Fixnum (or Bignum)
FLOAT4OID Float
FLOAT8OID Float
CASHOID Float
NUMERICOID Float
BOOLOID true, false
ABSTIMEOID Time
RELTIMEOID Time
TIMEOID Time
TIMETZOID Time
TIMESTAMPOID Time
TIMESTAMPTZOID Time
DATEOID Time
INTERVALOID Time
TINTERVALOID Tinterval (new Ruby class)
BITOID BitString (new Ruby class)
VARBITOID BitString (new Ruby class)
INETOID NetAddr (new Ruby class)
CIDROID NetAddr (new Ruby class)
MACADDROID MacAddr (new Ruby class)
POINTOID Point (new Ruby class)
LSEGOID Segment (new Ruby class)
BOXOID Box (new Ruby class)
PATHOID Path (new Ruby class)
POLYGONOID Polygon (new Ruby class)
CIRCLEOID Circle (new Ruby class)
all others OID are converted to a String object
== Class and modules
=== Global
--- transaction {|txn| }
create a new transaction, yield an object ((%PL::Transaction%))
--- warn [level], message
Ruby interface to PostgreSQL elog()
Possible value for ((%level%)) are ((%NOTICE%)), ((%DEBUG%)) and ((%NOIND%))
Use ((%raise()%)) if you want to simulate ((%elog(ERROR, "...")%))
--- $Plans (hash, tainted)
can be used to store prepared plans.
=== module PL
general module
--- args_type
Return the type of the arguments given to the function
--- column_name(table)
Return the name of the columns for the table
--- column_type(table)
return the type of the columns for the table
--- context
Return the context (or nil) associated with a SETOF function
(ExprMultiResult)
--- context=
Set the context for a SETOF function (ExprMultiResult)
--- quote(string)
Duplicates all occurences of single quote and backslash
characters. It should be used when variables are used in the query
string given to spi_exec or spi_prepare (not for the value list on
execp).
--- result_name
Return the name of the columns for a function returning a SETOF
--- result_type
Return the type of the columns for a function returning a SETOF
or the type of the return value
--- result_size
Return the number of columns for a function returning a SETOF
--- result_description
Return the table description given to a function returning a SETOF
--- exec(string [, count [, type]])
--- spi_exec(string [, count [, type]])
Call parser/planner/optimizer/executor for query. The optional
((%count%)) value tells spi_exec the maximum number of rows to be
processed by the query.
:SELECT
If the query is a SELECT statement, an array is return (if count is
not specified or with a value > 1). Each element of this array is an
hash where the key is the column name.
If type is specified it can take the value
* "array" return for each column an array with the element
["name", "value", "type", "len", "typeid"]
* "hash" return for each column an hash with the keys
{"name", "value", "type", "len", "typeid"}
* "value" return all values
For example this procedure display all rows in the table pg_table.
CREATE FUNCTION pg_table_dis() RETURNS int4 AS '
res = PLruby.exec("select * from pg_class")
res.each do |x|
warn "======================"
x.each do |y, z|
warn "name = #{y} -- value = #{z}"
end
warn "======================"
end
return res.size
' LANGUAGE 'plruby';
A block can be specified, in this case a call to yield() will be
made.
If count is specified with the value 1, only the first row (or
FALSE if it fail) is returned as a hash. Here a little example :
CREATE FUNCTION pg_table_dis() RETURNS int4 AS '
PL.exec("select * from pg_class", 1) { |y, z|
warn "name = #{y} -- value = #{z}"
}
return 1
' LANGUAGE 'plruby';
Another example with count = 1
create table T_pkey1 (
skey1 int4,
skey2 varchar(20),
stxt varchar(40)
);
create function toto() returns bool as '
warn("=======")
PL.exec("select * from T_pkey1", 1, "hash") do |a|
warn(a.inspect)
end
warn("=======")
PL.exec("select * from T_pkey1", 1, "array") do |a|
warn(a.inspect)
end
warn("=======")
PL.exec("select * from T_pkey1", 1) do |a|
warn(a.inspect)
end
warn("=======")
return true
' language 'plruby';
plruby_test=# select toto();
NOTICE: =======
NOTICE: {"name"=>"skey1", "typeid"=>23, "type"=>"int4", "value"=>"12", "len"=>4}
NOTICE: {"name"=>"skey2", "typeid"=>1043, "type"=>"varchar", "value"=>"a", "len"=>20}
NOTICE: {"name"=>"stxt", "typeid"=>1043, "type"=>"varchar", "value"=>"b", "len"=>40}
NOTICE: =======
NOTICE: ["skey1", "12", "int4", 4, 23]
NOTICE: ["skey2", "a", "varchar", 20, 1043]
NOTICE: ["stxt", "b", "varchar", 40, 1043]
NOTICE: =======
NOTICE: ["skey1", "12"]
NOTICE: ["skey2", "a"]
NOTICE: ["stxt", "b"]
NOTICE: =======
toto
------
t
(1 row)
plruby_test=#
:SELECT INTO, INSERT, UPDATE, DELETE
return the number of rows insered, updated, deleted, ...
:UTILITY
return TRUE
--- prepare(string[, types])
--- spi_prepare(string[, types])
--- prepare(string, "types" => types, "count" => count, "output" => type, "tmp" => true)
Deprecated : See ((%PL::Plan::new%)) and ((%PL::Plan#save%))
Prepares AND SAVES a query plan for later execution. It is a bit
different from the C level SPI_prepare in that the plan is
automatically copied to the toplevel memory context.
If the query references arguments, the type names must be given as a
Ruby array of strings. The return value from prepare is a
((%PL::Plan%)) object to be used in subsequent calls to
((%PL::Plan#exec%)).
If the hash given has the keys ((%count%)), ((%output%)) these values
will be given to the subsequent calls to ((%each%))
=== class PL::Plan
class for prepared plan
--- initialize(string, "types" => types, "count" => count, "output" => type, "save" => false)
Prepares a query plan for later execution.
If the query references arguments, the type names must be given as a
Ruby array of strings.
If the hash given has the keys ((%output%)), ((%count%)) these values
will be given to the subsequent calls to ((%each%))
If ((%"save"%)) as a true value, the plan will be saved
--- exec(values, [count [, type]])
--- execp(values, [count [, type]])
--- exec("values" => values, "count" => count, "output" => type)
--- execp("values" => values, "count" => count, "output" => type)
Execute a prepared plan from ((%PL::PLan::new%)) with variable
substitution. The optional ((%count%)) value tells
((%PL::Plan#exec%)) the maximum number of rows to be processed by the
query.
If there was a typelist given to ((%PL::Plan::new%)), an array
of ((%values%)) of exactly the same length must be given to
((%PL::Plan#exec%)) as first argument. If the type list on
((%PL::Plan::new%)) was empty, this argument must be omitted.
If the query is a SELECT statement, the same as described for
((%PL#exec%)) happens for the loop-body and the variables for
the fields selected.
If type is specified it can take the values
* "array" return an array with the element ["name", "value", "type", "len", "typeid"]
* "hash" return an hash with the keys {"name", "value", "type", "len", "typeid"}
* "value" return an array with all values
Here's an example for a PL/Ruby function using a prepared plan :
CREATE FUNCTION t1_count(int4, int4) RETURNS int4 AS '
if ! $Plans.key?("plan")
# prepare the saved plan on the first call
$Plans["plan"] = PL::Plan.new("SELECT count(*) AS cnt FROM t1
WHERE num >= $1 AND num <= $2",
["int4", "int4"]).save
end
n = $Plans["plan"].exec([args[0], args[1]], 1)
n["cnt"]
' LANGUAGE 'plruby';
--- cursor(name = nil, "values" => values, "output" => type)
Create a new object PL::Cursor
If output is specified it can take the values
* "array" return an array with the element ["name", "value", "type", "len", "typeid"]
* "hash" return an hash with the keys {"name", "value", "type", "len", "typeid"}
* "value" return an array with all values
If there was a typelist given to ((%PL::Plan::new%)), an array
of ((%values%)) of exactly the same length must be given to
((%PL::Plan#cursor%))
--- each(values, [count [, type ]]) { ... }
--- fetch(values, [count [, type ]]) { ... }
--- each("values" => values, "count" => count, "output" => type) { ... }
--- fetch("values" => values, "count" => count, "output" => type) { ... }
Same then #exec but a call to SPI_cursor_open(), SPI_cursor_fetch() is made.
Can be used only with a block and a SELECT statement
create function toto() returns bool as '
plan = PL::Plan.new("select * from T_pkey1")
warn "=====> ALL"
plan.each do |x|
warn(x.inspect)
end
warn "=====> FIRST 2"
plan.each("count" => 2) do |x|
warn(x.inspect)
end
return true
' language 'plruby';
plruby_test=# select * from T_pkey1;
skey1 | skey2 | stxt
-------+-------+------
12 | a | b
24 | c | d
36 | e | f
(3 rows)
plruby_test=#
plruby_test=# select toto();
NOTICE: =====> ALL
NOTICE: {"skey1"=>"12", "skey2"=>"a", "stxt"=>"b"}
NOTICE: {"skey1"=>"24", "skey2"=>"c", "stxt"=>"d"}
NOTICE: {"skey1"=>"36", "skey2"=>"e", "stxt"=>"f"}
NOTICE: =====> FIRST 2
NOTICE: {"skey1"=>"12", "skey2"=>"a", "stxt"=>"b"}
NOTICE: {"skey1"=>"24", "skey2"=>"c", "stxt"=>"d"}
toto
------
t
(1 row)
plruby_test=#
--- release
Release a query plan
--- save
Save a query plan for later execution. The plan is copied to the
toplevel memory context.
=== class PL::Cursor
A cursor is created with the method PL::Plan#cursor
--- close
Closes a cursor
--- each {|row| ... }
Iterate over all rows (forward)
--- fetch(count = 1)
--- row(count = 1)
Fetches some rows from a cursor
if count > 0 fetch forward else backward
--- move(count)
Move a cursor : if count > 0 move forward else backward
--- reverse_each {|row| ... }
Iterate over all rows (backward)
--- rewind
Positions the cursor at the beginning of the table
=== class PL::Transaction
a transaction is created with the global function ((%transaction()%)). Only
available with PostgreSQL >= 8.0
--- abort
Abort the transaction
--- commit
Commit the transaction
=== class BitString
The class BitString implement the PostgreSQL type ((|bit|))
and ((|bit varying|))
The modules Comparable and Enumerable are included
--- from_string(string, length = strlen(string))
Convert a ((|String|)) to a ((|BitString|))
--- <=>(other)
comparison function for 2 ((|BitString|)) objects
All bits are considered and additional zero bits may make one string
smaller/larger than the other, even if their zero-padded values would
be the same.
--- +(other)
Concatenate ((|self|)) and ((|other|))
--- &(other)
AND operator
--- |(other)
OR operator
--- ^(other)
XOR operator
--- ~
NOT operator
--- <<(lshft)
LEFT SHIFT operator
--- >>(rshft)
RIGHT SHIFT operator
--- [](*args)
Element reference with the same syntax that for a ((|String|)) object
Return a ((|BitString|)) or a ((|Fixnum|)) 0, 1
bitstring[fixnum]
bitstring[fixnum, fixnum]
bitstring[range]
bitstring[regexp]
bitstring[regexp, fixnum]
bitstring[string]
bitstring[other_bitstring]
--- []=(*args)
Element assignment with the same syntax that for a ((|String|)) object
bitstring[fixnum] = fixnum
bitstring[fixnum] = string_or_bitstring
bitstring[fixnum, fixnum] = string_or_bitstring
bitstring[range] = string_or_bitstring
bitstring[regexp] = string_or_bitstring
bitstring[regexp, fixnum] = string_or_bitstring
bitstring[other_str] = string_or_bitstring
--- concat(other)
append ((|other|)) to ((|self|))
--- each
iterate other each bit
--- include?(other)
return ((|true|)) if ((|other|)) is included in ((|self|))
--- index(other)
return the position of ((|other|)) in ((|self|))
return ((|nil|)) if ((|other|)) is not included in ((|self|))
--- initialize(init, nbits = -1)
create a new ((|BitString|)) object with ((|nbits|)) bits
((|init|)) can be a ((|Fixnum|)) or a ((|String|))
For a ((|String|)) the first character can be 'x', 'X' for and
hexadecimal representation, or 'b', 'B' for a binary representation.
The default is a binary representation
--- length
return the length of ((|self|)) in bits
--- octet_length
return the length of ((|self|)) in octets
--- push(other)
append ((|other|)) to ((|self|))
--- to_i
convert ((|self|)) to a ((|Fixnum|))
--- to_s
convert ((|self|)) to a ((|String|))
=== class NetAddr
The class NetAddr implement the PostgreSQL type ((|inet|))
and ((|cidr|))
The module Comparable is included
--- from_string(string, cidr = false)
Convert a ((|String|)) to a ((|NetAddr|))
--- <=>(other)
comparison function for 2 ((|NetAddr|)) objects
comparison is first on the common bits of the network part, then on
the length of the network part, and then on the whole unmasked address.
--- abbrev
return the abbreviated display format as a ((|String|)) object
--- broadcast
return the broadcast address from the network
--- contain?(other)
return true if ((|other|)) is included in ((|self|))
--- contain_or_equal?(other)
return true if ((|other|)) is included in ((|self|)), or equal