-
Notifications
You must be signed in to change notification settings - Fork 24
/
DESCRIPTION
83 lines (83 loc) · 2.09 KB
/
DESCRIPTION
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
Package: vip
Type: Package
Title: Variable Importance Plots
Version: 0.4.1
Authors@R: c(
person(c("Brandon", "M."), family = "Greenwell",
email = "greenwell.brandon@gmail.com",
role = c("aut", "cre"),
comment = c(ORCID = "0000-0002-8120-0084")),
person("Brad", "Boehmke",
email = "bradleyboehmke@gmail.com",
role = c("aut"),
comment = c(ORCID = "0000-0002-3611-8516"))
)
Description: A general framework for constructing variable importance plots from
various types of machine learning models in R. Aside from some standard model-
specific variable importance measures, this package also provides model-
agnostic approaches that can be applied to any supervised learning algorithm.
These include 1) an efficient permutation-based variable importance measure,
2) variable importance based on Shapley values (Strumbelj and Kononenko,
2014) <doi:10.1007/s10115-013-0679-x>, and 3) the variance-based
approach described in Greenwell et al. (2018) <arXiv:1805.04755>. A
variance-based method for quantifying the relative strength of interaction
effects is also included (see the previous reference for details).
License: GPL (>= 2)
URL: https://github.com/koalaverse/vip/,
https://koalaverse.github.io/vip/
BugReports: https://github.com/koalaverse/vip/issues
Encoding: UTF-8
VignetteBuilder: knitr
Depends: R (>= 4.1.0)
Imports:
foreach,
ggplot2 (>= 0.9.0),
stats,
tibble,
utils,
yardstick
Suggests:
bookdown,
DT,
covr,
doParallel,
dplyr,
fastshap (>= 0.1.0),
knitr,
lattice,
mlbench,
modeldata,
NeuralNetTools,
pdp,
rmarkdown,
tinytest (>= 1.4.1),
varImp
Enhances:
C50,
caret,
Cubist,
earth,
gbm,
glmnet,
h2o,
lightgbm,
mixOmics,
mlr,
mlr3,
neuralnet,
nnet,
parsnip (>= 0.1.7),
party,
partykit,
pls,
randomForest,
ranger,
rpart,
RSNNS,
sparklyr (>= 0.8.0),
tidymodels,
workflows (>= 0.2.3),
xgboost
LazyData: true
RoxygenNote: 7.2.3
Roxygen: list(markdown = TRUE)