-
Notifications
You must be signed in to change notification settings - Fork 0
/
hockey-train.py
152 lines (120 loc) · 7.48 KB
/
hockey-train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
import numpy as np
import laserhockey.hockey_env as h_env
import gym
from importlib import reload
import time
import argparse
import datetime
import gym
import itertools
import torch
from sac.sac_better import SAC
from torch.utils.tensorboard import SummaryWriter
from sac.prio_replay_memory import PrioritizedReplay
from sac.replay_memory import ReplayMemory
import copy
parser = argparse.ArgumentParser(description='Soft Actor-Critic Args')
parser.add_argument('--env-name', default="Hockey")
parser.add_argument('--policy', default="Gaussian")
parser.add_argument('--gamma', type=float, default=0.95, metavar='G')
parser.add_argument('--tau', type=float, default=0.005, metavar='G')
parser.add_argument('--lr', type=float, default=0.0003, metavar='G')
parser.add_argument('--alpha', type=float, default=0.2, metavar='G')
parser.add_argument('--automatic_entropy_tuning', type=bool, default=True, metavar='G')
parser.add_argument('--seed', type=int, default=111111, metavar='N')
parser.add_argument('--batch_size', type=int, default=4, metavar='N')
parser.add_argument('--num_steps', type=int, default=1000001, metavar='N')
parser.add_argument('--hidden_size', type=int, default=512, metavar='N')
parser.add_argument('--updates_per_step', type=int, default=1, metavar='N')
parser.add_argument('--start_steps', type=int, default=10000, metavar='N')
parser.add_argument('--target_update_interval', type=int, default=1, metavar='N')
parser.add_argument('--replay_size', type=int, default=1000000, metavar='N')
args = parser.parse_args()
args.cuda =True if torch.cuda.is_available() else False
env = h_env.HockeyEnv(mode=h_env.HockeyEnv.TRAIN_DEFENSE)
# Agent
agent = SAC(env.observation_space.shape[0], env.action_space, args)
# actor512 = 'hockey-hidden-models-attack/sac_actor_hockey_reward-8.385833864540086_episode-41000_batch_size-4_gamma-0.95_tau-0.005_lr-0.0003_alpha-0.2_tuning-True_hidden_size-512_updatesStep-1_startSteps-10000_targetIntervall-1_replaysize-1000000_t-2021-03-10_22-40-41'
# critic512 = 'hockey-hidden-models-attack/sac_critic_hockey_reward-8.385833864540086_episode-41000_batch_size-4_gamma-0.95_tau-0.005_lr-0.0003_alpha-0.2_tuning-True_hidden_size-512_updatesStep-1_startSteps-10000_targetIntervall-1_replaysize-1000000_t-2021-03-10_22-40-41'
# actor128 = 'hockey-hidden-models-attack/sac_actor_hockey_reward-8.184820100545167_episode-39000_batch_size-4_gamma-0.95_tau-0.005_lr-0.0003_alpha-0.2_tuning-True_hidden_size-128_updatesStep-1_startSteps-10000_targetIntervall-1_replaysize-1000000_t-2021-03-10_22-36-16'
# critic128 = 'hockey-hidden-models-attack/sac_critic_hockey_reward-8.184820100545167_episode-39000_batch_size-4_gamma-0.95_tau-0.005_lr-0.0003_alpha-0.2_tuning-True_hidden_size-128_updatesStep-1_startSteps-10000_targetIntervall-1_replaysize-1000000_t-2021-03-10_22-36-16'
actor64 = 'hockey-hidden-models-attack/sac_actor_hockey_reward-8.407677291229737_episode-33000_batch_size-4_gamma-0.95_tau-0.005_lr-0.0003_alpha-0.2_tuning-True_hidden_size-64_updatesStep-1_startSteps-10000_targetIntervall-1_replaysize-1000000_t-2021-03-10_22-36-10'
critic64 = 'hockey-hidden-models-attack/sac_critic_hockey_reward-8.407677291229737_episode-33000_batch_size-4_gamma-0.95_tau-0.005_lr-0.0003_alpha-0.2_tuning-True_hidden_size-64_updatesStep-1_startSteps-10000_targetIntervall-1_replaysize-1000000_t-2021-03-10_22-36-10'
agent.load_model(actor64,critic64)
time_ = datetime.datetime.now().strftime('%Y-%m-%d_%H-%M-%S')
#Tesnorboard
writer = SummaryWriter(f"hockey-hidden-runs-defence/{time_}_batch_size-{args.batch_size}_gamma-{args.gamma}_tau-{args.tau}_lr-{args.lr}_alpha-{args.alpha}_tuning-{args.automatic_entropy_tuning}_hidden_size-{args.hidden_size}_updatesStep-{args.updates_per_step}_startSteps-{args.start_steps}_targetIntervall-{args.target_update_interval}_replaysize-{args.replay_size}")
# Memory
memory = PrioritizedReplay(args.replay_size)
# memory = ReplayMemory(args.replay_size,args.seed)
# Training Loop
total_numsteps = 0
updates = 0
o = env.reset()
# _ = env.render()
for i_episode in itertools.count(1):
episode_reward = 0
episode_steps = 0
done = False
state = env.reset()
while not done:
# state = env.obs_agent_two()
if args.start_steps > total_numsteps:
action = env.action_space.sample() # Sample random action
else:
action = agent.select_action(state) # Sample action from policy
if len(memory) > args.batch_size:
# Number of updates per step in environment
for i in range(args.updates_per_step):
# Update parameters of all the networks
critic_1_loss, critic_2_loss, policy_loss, ent_loss, alpha,memory_ = agent.update_parameters(memory, args.batch_size, updates)
memory=memory_
writer.add_scalar('loss/critic_1', critic_1_loss, updates)
writer.add_scalar('loss/critic_2', critic_2_loss, updates)
writer.add_scalar('loss/policy', policy_loss, updates)
writer.add_scalar('loss/entropy_loss', ent_loss, updates)
writer.add_scalar('entropy_temprature/alpha', alpha, updates)
updates += 1
a2 = [10,0.,0,0]
# obs_agent2 = env.obs_agent_two()
# a2 = opponent.select_action(obs_agent2, evaluate=True)
next_state, reward, done, _ = env.step(np.hstack([action[0:4],a2[0:4]]))
# env.render()
episode_steps += 1
total_numsteps += 1
episode_reward += reward
# Ignore the "done" signal if it comes from hitting the time horizon.
mask = 1 if episode_steps == 81 else float(not done)
# mask = float(not done)
memory.push(state, action, reward, next_state, mask)
state = next_state
if total_numsteps > args.num_steps:
break
writer.add_scalar('reward/train', episode_reward, i_episode)
print("Episode: {}, total numsteps: {}, episode steps: {}, reward: {}".format(i_episode, total_numsteps, episode_steps, round(episode_reward, 2)))
if i_episode % 10 == 0:
avg_reward = 0.
episodes = 5
for _ in range(episodes):
state = env.reset()
episode_reward = 0
done = False
while not done:
action = agent.select_action(state, evaluate=True)
# obs_agent2 = env.obs_agent_two()
# a2 = opponent.select_action(obs_agent2, evaluate=True)
a2 = [10,0.,0,0]
next_state, reward, done, _ = env.step(np.hstack([action[0:4],a2[0:4]]))
# env.render()
episode_reward += reward
state = next_state
avg_reward += episode_reward
avg_reward /= episodes
if i_episode%500==0:
time_ = datetime.datetime.now().strftime('%Y-%m-%d_%H-%M-%S')
agent.save_model( "hockey-hidden-models-defence", "hockey", suffix=f"reward-{avg_reward}_episode-"+str(i_episode)+f"_batch_size-{args.batch_size}_gamma-{args.gamma}_tau-{args.tau}_lr-{args.lr}_alpha-{args.alpha}_tuning-{args.automatic_entropy_tuning}_hidden_size-{args.hidden_size}_updatesStep-{args.updates_per_step}_startSteps-{args.start_steps}_targetIntervall-{args.target_update_interval}_replaysize-{args.replay_size}_t-{time_}")
writer.add_scalar('avg_reward/test', avg_reward, i_episode)
print("----------------------------------------")
print("Test Episodes: {}, Avg. Reward: {}".format(episodes, round(avg_reward, 2)))
print("----------------------------------------")
env.close()