-
Notifications
You must be signed in to change notification settings - Fork 0
/
main_better.py
124 lines (98 loc) · 4.66 KB
/
main_better.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
import argparse
import datetime
import gym
import numpy as np
import itertools
import torch
from sac.sac_better import SAC
from torch.utils.tensorboard import SummaryWriter
from sac.prio_replay_memory import PrioritizedReplay
from sac.replay_memory import ReplayMemory
parser = argparse.ArgumentParser(description='Soft Actor-Critic Args')
parser.add_argument('--env-name', default="LunarLanderContinuous-v2")
parser.add_argument('--policy', default="Gaussian")
parser.add_argument('--gamma', type=float, default=0.99, metavar='G')
parser.add_argument('--tau', type=float, default=0.005, metavar='G')
parser.add_argument('--lr', type=float, default=0.0003, metavar='G')
parser.add_argument('--alpha', type=float, default=0.2, metavar='G')
parser.add_argument('--automatic_entropy_tuning', type=bool, default=True, metavar='G')
parser.add_argument('--seed', type=int, default=111111, metavar='N')
parser.add_argument('--batch_size', type=int, default=8, metavar='N')
parser.add_argument('--num_steps', type=int, default=1000001, metavar='N')
parser.add_argument('--hidden_size', type=int, default=256, metavar='N')
parser.add_argument('--updates_per_step', type=int, default=1, metavar='N')
parser.add_argument('--start_steps', type=int, default=10000, metavar='N')
parser.add_argument('--target_update_interval', type=int, default=1, metavar='N')
parser.add_argument('--replay_size', type=int, default=1000000, metavar='N')
args = parser.parse_args()
args.cuda =True if torch.cuda.is_available() else False
# Environment
# env = NormalizedActions(gym.make(args.env_name))
env = gym.make(args.env_name)
env.seed(args.seed)
env.action_space.seed(args.seed)
torch.manual_seed(args.seed)
np.random.seed(args.seed)
# Agent
agent = SAC(env.observation_space.shape[0], env.action_space, args)
#Tesnorboard
writer = SummaryWriter('runs/{}_SAC_{}_{}_{}'.format(datetime.datetime.now().strftime("%Y-%m-%d_%H-%M-%S"), args.env_name,
args.policy, "autotune" if args.automatic_entropy_tuning else ""))
# Memory
memory = PrioritizedReplay(args.replay_size)
# Training Loop
total_numsteps = 0
updates = 0
for i_episode in itertools.count(1):
episode_reward = 0
episode_steps = 0
done = False
state = env.reset()
while not done:
if args.start_steps > total_numsteps:
action = env.action_space.sample() # Sample random action
else:
action = agent.select_action(state) # Sample action from policy
if len(memory) > args.batch_size:
# Number of updates per step in environment
for i in range(args.updates_per_step):
# Update parameters of all the networks
critic_1_loss, critic_2_loss, policy_loss, ent_loss, alpha, memory_ = agent.update_parameters(memory, args.batch_size, updates)
memory=memory_
writer.add_scalar('loss/critic_1', critic_1_loss, updates)
writer.add_scalar('loss/critic_2', critic_2_loss, updates)
writer.add_scalar('loss/policy', policy_loss, updates)
writer.add_scalar('loss/entropy_loss', ent_loss, updates)
writer.add_scalar('entropy_temprature/alpha', alpha, updates)
updates += 1
next_state, reward, done, _ = env.step(action) # Step
episode_steps += 1
total_numsteps += 1
episode_reward += reward
# Ignore the "done" signal if it comes from hitting the time horizon.
mask = 1 if episode_steps == env._max_episode_steps else float(not done)
memory.push(state, action, reward, next_state, mask)
state = next_state
if total_numsteps > args.num_steps:
break
writer.add_scalar('reward/train', episode_reward, i_episode)
print("Episode: {}, total numsteps: {}, episode steps: {}, reward: {}".format(i_episode, total_numsteps, episode_steps, round(episode_reward, 2)))
if i_episode % 10 == 0:
avg_reward = 0.
episodes = 10
for _ in range(episodes):
state = env.reset()
episode_reward = 0
done = False
while not done:
action = agent.select_action(state, evaluate=True)
next_state, reward, done, _ = env.step(action)
episode_reward += reward
state = next_state
avg_reward += episode_reward
avg_reward /= episodes
writer.add_scalar('avg_reward/test', avg_reward, i_episode)
print("----------------------------------------")
print("Test Episodes: {}, Avg. Reward: {}".format(episodes, round(avg_reward, 2)))
print("----------------------------------------")
env.close()